首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4233篇
  免费   319篇
  国内免费   29篇
电工技术   54篇
综合类   25篇
化学工业   1164篇
金属工艺   135篇
机械仪表   216篇
建筑科学   168篇
矿业工程   11篇
能源动力   229篇
轻工业   345篇
水利工程   98篇
石油天然气   65篇
武器工业   3篇
无线电   363篇
一般工业技术   723篇
冶金工业   138篇
原子能技术   33篇
自动化技术   811篇
  2024年   17篇
  2023年   61篇
  2022年   93篇
  2021年   219篇
  2020年   240篇
  2019年   287篇
  2018年   375篇
  2017年   326篇
  2016年   295篇
  2015年   187篇
  2014年   325篇
  2013年   512篇
  2012年   363篇
  2011年   347篇
  2010年   221篇
  2009年   217篇
  2008年   117篇
  2007年   99篇
  2006年   62篇
  2005年   32篇
  2004年   29篇
  2003年   20篇
  2002年   20篇
  2001年   12篇
  2000年   13篇
  1999年   18篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   12篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1986年   2篇
  1984年   6篇
  1982年   5篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1967年   1篇
排序方式: 共有4581条查询结果,搜索用时 0 毫秒
101.
Devising a new mechanistic method to predict gas–liquid interface shape in horizontal pipes is concerned in this article. An experiment was conducted to find the pressure gradients of air–water flow through a 1‐in. pipe diameter. Comparing results of model with some experimental data available in the literature demonstrates that the model provides quite better predictions than existed models do. This model also predicts flow regime transition from stratified to annular flow better than Apparent Rough Surface and Modified Apparent Rough Surface models for both 1‐ and 2‐in. pipe diameters. The model also leads to reliable predictions of wetted wall fraction experimental data. Although one parameter of new model was evaluated based on air–water flow pressure loss experimental data for 1 in. pipe, it was considerably successful to predict pressure drop, liquid holdup, stratified‐annular transition and wetted wall fraction for other gas–liquid systems and pipe diameters. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1043–1053, 2015  相似文献   
102.
Many countries have experienced restructuring in their electric utilities. This restructuring has presented the power industries with new challenges, the most important of which is long-term investment planning under uncertain conditions. This paper presents an improved mechanism for capacity payment. The mechanism has been investigated based on system dynamic modeling. In our proposed mechanism, generators will recover a part of their investment through capacity payment. While the payment for any plant remains constant during the operation period, it depends on the investment needed to build it. The main factors affecting long-term planning have been considered in our model. The approach can be used to investigate the effects of fixed as well as variable capacity payment in market investment. We used the probability density function of load as a new concept to calculate average market price. Delays in unit constructions, estimation of demand, and market capacity growth during construction periods have been included in the proposed algorithm as parameters, which affect the regulator's decision for changing capacity payment. The model can be used by regulators to investigate strategies that may affect the fluctuations in the market.  相似文献   
103.
The effect of some operating conditions such as temperature, gas hourly space velocity (GHSV), CH4/O2 ratio and diluents gas (mol% N2) on ethylene production by oxidative coupling of methane (OCM) in a fixed bed reactor at atmospheric pressure was studied over Mn/Na2WO4/SiO2 catalyst. Based on the properties of neural networks, an artificial neural network was used for model developing from experimental data. To prevent network complexity and effective data input to the network, principal component analysis method was used and the number of output parameters was reduced from 4 to 2. A feed-forward back-propagation network was used for simulating the relations between process operating conditions and those aspects of catalytic performance including conversion of methane, C2 products selectivity, C2 yielding and C2H4/C2H6 ratio. Levenberg-Marquardt method is presented to train the network. For the first output, an optimum network with 4-9-1 topology and for the second output, an optimum network with 4-6-1 topology was prepared. After simulating the process as well as using ANNs, the operating conditions were optimized and a genetic algorithm based on maximum yield of C2 was used. The average error in comparing the experimental and simulated values for methane conversion, C2 products selectivity, yield of C2 and C2H4/C2H6 ratio, was estimated as 2.73%, 10.66%, 5.48% and 10.28%, respectively.  相似文献   
104.
Graphene-supported monometallic (Pt) and bimetallic (CuPt3) cubic nanocatalysts have been investigated as new positive electrode materials for improving the VO2+/VO2+ redox process occurring in the vanadium redox flow batteries (VRB). High-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) have been employed to characterize the electrodes. The presence of the CuPt3 nanocubes on graphene conferred higher electrocatalytic activity due to the much higher electroactive area compared to that obtained with the Pt nanoparticles. The electrochemical surface area of the nano-(CuPt3)-decorated graphene electrode was 105% higher compared to non-decorated graphene, being then a promising alternative for improving the VRB.  相似文献   
105.
The objective of this work is the prediction of induction time (ti) for simple gas hydrate formation in the presence or absence of kinetic hydrate inhibitors at various conditions based on the Kashchiev and Firoozabadi model in a flow mini‐loop apparatus. For this purpose, the ti model is developed for simple gas hydrate formation in batch system for natural gas components during hydrate formation in a flow mini‐loop apparatus. A laboratory flow mini‐loop apparatus is designed and built up to measure the ti for simple gas hydrate formation when a hydrate former (such as C1, C3, CO2 and i‐C4) is contacted with water in the absence or presence of dissolved inhibitor, such as poly vinylpyrrolidone, PVCap and L ‐tyrosine. In each experiment, a water blend saturated with pure gas is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of the required gas make‐up. The average absolute deviation (AAD) of the predicted ti values from the corresponding experimental data are found to be about 11% and 9.4% for gas hydrate formation ti in the presence or absence of kinetic hydrate inhibitors, respectively. © 2012 Canadian Society for Chemical Engineering  相似文献   
106.
In this study, nanocomposite hydrogels from grafting of acrylamide onto kappa-carrageenan biopolymer were prepared in the presence of sepiolite clay. Methylenebisacrylamide and ammonium persulfate were used as cross-linker and initiator, respectively. The sepiolite nanoclay was introduced into hydrogel matrix without any chemical treatment. The structure of nanocomposites was investigated by FTIR, SEM, TEM, and TGA techniques. The TEM image showed that sepiolite exists as individual needle’s shape. The swelling of hydrogels were studied in distilled water, salt solutions, and various pHs. The obtained nanocomposites were evaluated to remove of cationic crystal violet (CV) dye from water. The kinetic and isotherm of adsorption of dye onto nanocomposites were studied and analyzed according to kinetic and isotherm models. The results showed that the pseudo-second-order adsorption kinetic was predominated for the adsorption of CV onto nanocomposites. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The results corroborated that the experimental data fit the Langmuir isotherm the best. By varying the pH of initial dye solution, while the clay-free hydrogel showed relatively pH-independent adsorption behavior, the nanocomposites depicted pH-dependent adsorption.  相似文献   
107.
An amine‐ester derivative of isoeugenol was prepared in three steps. This amine‐ester was converted to diazonium salt and subsequently was reacted with 2‐naphthol and a novel isoeugenol ester‐azo derivative as a new monomer was obtained in quantitative yield. This monomer was characterized by high‐field 1H‐NMR, IR, and elemental analysis and then was used for the preparation of model compound and polymerization reactions. 4‐Phenyl‐1,2,4‐triazoline‐3,5‐dione was allowed to react with this new monomer. The reaction was very fast and gave only one double adduct by Diels–Alder and ene pathways in excellent yield. The polymerization reactions of novel monomer with bistriazolinediones [bis(p‐3,5‐dioxo‐1,2,4‐triazolin‐4‐ylphenyl)methane and 1,6‐bis(3,5‐dioxo‐1,2,4‐triazolin‐4‐yl)hexane] were carried out in N,N‐dimethylacetamide at room temperature. The reactions were exothermic, fast, and gave novel heterocyclic polyimides by repetitive Diels–Alder‐ene polyaddition reactions. Some structural characterization and physical properties of these novel heterocyclic polyimides are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1942–1951, 2003  相似文献   
108.

One of the most important reactions in organic synthesis is Ullmann-type C–N coupling reaction which has been used for preparation of numerous biologically active compounds. In this work, CuI immobilized on tricationic ionic liquid anchored on functionalized magnetic hydrotalcite (Fe3O4/HT-TIL-CuI) has been successfully prepared and fully characterized by different techniques, including fourier-transform infrared spectroscopy, vibrating sample magnetometer, thermo gravimetric analysis, transmission electron microscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping, zeta potential, X-ray diffraction, temperature programmed desorption of ammonia (NH3-TPD), temperature-programmed reduction and inductively coupled plasma. The results showed that the as-prepared nanocatalyst possesses plate-like morphology with approximate size of 50 nm and superparamagnetic behavior. Also, total acidity and total hydrogen consumption of the nanocatalyst were measured to be 8.5 and 1.41 mmol g?1, respectively. This nanocatalyst exhibited favorable performance for C–N coupling reaction among a variety of aryl halides and N(H)-heterocycles (benzimidazoles, pyrazoles and triazoles) in the presence of 2.5 mol% of nanocatalyst without any additives under air atmosphere revealing high yields in all cases. Besides, it is noted that in the present system the desired product can be easily and quickly isolated and nanocatalyst also recovered magnetically from the reaction mixture employing a permanent magnet for at least six consecutive trials without a discernible decrease in catalytic activity which makes the proposed methodology appropriate for industrial. The findings demonstrated the advantages of the present method as no need for neutral atmosphere, appropriate times, recyclability of the catalyst, broad substrate scope, minimization of chemical waste, simple purification of products, easy workup process, and high yields.

  相似文献   
109.
In recent years, as a result of climate change as well as rainfall reduction in arid and semi‐arid regions, modelling qualitative and quantitative parameters belonging to aquifers has become crucially important. In Iran, as aquifers are treated as the most commonly used drinking water resources, modelling their qualitative and quantitative parameters is enormously important. In this paper, for the first time, values of salinity, total dissolved solids (TDS), groundwater level (GWL) and electrical conductivity (EC) of the Arak Plain, located in Markazi Province, Iran, are simulated by means of four modern artificial intelligence models including extreme learning machine (ELM), wavelet extreme learning machine (WELM), online sequential extreme learning machine (OSELM) and wavelet online sequential extreme learning machine (WOSELM) as well as the MODFLOW software for a 15‐year period monthly. To develop the hybrid artificial intelligence models, the wavelet is employed. First, the effective lags in estimating the qualitative and quantitative parameters of the groundwater are identified using the autocorrelation function (ACF) and the partial autocorrelation function (PACF) analysis. After that, four different models are developed by the selected input combinations and also the ACF and the PACF in the form of different lags for each of ELM, WAELM, OSELM and WOSELM methods. Then, the superior models in simulating the groundwater qualitative and qualitative parameters are detected by conducting a sensitivity analysis. To forecast the electrical conductivity (EC) by the best WOSELM model, the values of the Nash–Sutcliffe efficiency coefficient (NSC), Mean Absolute Error (MAE) and the scatter index (SI) are obtained to be 0.991, 18.005 and 4.28E‐03, respectively. In addition, the most effective lags in estimating these parameters are introduced. Subsequently, the results found by the MODFLOW model are compared with those of the artificial intelligence models and it is concluded that the latter are more accurate. For instance, the scatter index and Nash–Sutcliffe efficiency coefficient values calculated by WOSELM for TDS, respectively, are 5.34E‐03 and 0.991. Finally, an uncertainty analysis is conducted to evaluate the performance of different numerical models. For example, MODFLOW has an underestimated performance in simulating the salinity parameter.  相似文献   
110.
ABSTRACT

This paper presents the state of the art relating to multi-objective modelling for day ahead scheduling of multi micro grid-based distribution networks, using optimal power flow (OPF) accompanied by data envelopment analysis (DEA). In this paper eco-reliability cost function, power quality enhancement and emission reduction are treated as the objective functions and the uncertainties of renewable distributed generations (DGs), load demand and market price are incorporated into the problem. This method is able to find the optimum operation of DGs in grid-connected or isolated MGs, power transaction between each MG and upstream networks/other MGs and hourly reconfiguration instants. For this purpose, firstly OPF is applied to the problem, then the obtained optimal solutions are prioritised by DEA and ranking is done, based on the efficiencies of the optimal solutions. Finally, the provided results validate the practicability of the proposed method and accuracy of the outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号