首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7862篇
  免费   401篇
  国内免费   52篇
电工技术   215篇
综合类   20篇
化学工业   1700篇
金属工艺   170篇
机械仪表   187篇
建筑科学   247篇
矿业工程   8篇
能源动力   547篇
轻工业   780篇
水利工程   92篇
石油天然气   153篇
武器工业   4篇
无线电   965篇
一般工业技术   1421篇
冶金工业   453篇
原子能技术   81篇
自动化技术   1272篇
  2024年   21篇
  2023年   182篇
  2022年   438篇
  2021年   567篇
  2020年   390篇
  2019年   396篇
  2018年   517篇
  2017年   354篇
  2016年   392篇
  2015年   237篇
  2014年   367篇
  2013年   604篇
  2012年   405篇
  2011年   458篇
  2010年   297篇
  2009年   246篇
  2008年   232篇
  2007年   210篇
  2006年   174篇
  2005年   153篇
  2004年   126篇
  2003年   103篇
  2002年   118篇
  2001年   62篇
  2000年   65篇
  1999年   76篇
  1998年   124篇
  1997年   108篇
  1996年   72篇
  1995年   79篇
  1994年   52篇
  1993年   50篇
  1992年   40篇
  1991年   23篇
  1990年   28篇
  1989年   42篇
  1988年   46篇
  1987年   28篇
  1986年   28篇
  1985年   42篇
  1984年   49篇
  1983年   41篇
  1982年   26篇
  1981年   21篇
  1980年   28篇
  1979年   23篇
  1978年   18篇
  1977年   21篇
  1976年   30篇
  1974年   16篇
排序方式: 共有8315条查询结果,搜索用时 15 毫秒
971.
972.
A high-strength low-alloy steel, AISI 9254 (54SiCr6), is widely used for suspension spring production in the automotive industry. In this work, industrially manufactured zinc phosphate coated helical springs are subjected to detailed microstructural and surface analysis for better understanding of corrosion evolution. The material’s free corrosion potential and anodic/cathodic behaviour were investigated in NaCl solutions and corrosion propagation mechanisms were studied using potentiostatic polarisation on cross-sectional and external surfaces. The bulk material is fully martensite with uniformly distributed MnS inclusions, while the spring surface has a 2–3?μm mechanically deformed region introduced by shot-peening and a thin zinc phosphate coating. The corrosion open circuit potential of bulk material and shot-peened spring surface was about –0.7VSCE without significant difference, while phosphated surface is more noble (more positive potential). MnS inclusions, stimulating the anodic attack in the steel, influence corrosion propagation and pit morphology to a large extent that can have an impact on the spring performance.  相似文献   
973.
A topoisomerase-DNA transient covalent complex can be a druggable target for novel topoisomerase poison inhibitors that represent a new class of antibacterial or anticancer drugs. Herein, we have investigated molecular features of the functionally important Escherichia coli topoisomerase I (EctopoI)-DNA covalent complex (EctopoIcc) for molecular simulations, which is very useful in the development of new antibacterial drugs. To demonstrate the usefulness of our approach, we used a model small molecule (SM), NSC76027, obtained from virtual screening. We examined the direct binding of NSC76027 to EctopoI as well as inhibition of EctopoI relaxation activity of this SM via experimental techniques. We then performed molecular dynamics (MD) simulations to investigate the dynamics and stability of EctopoIcc and EctopoI-NSC76027-DNA ternary complex. Our simulation results show that NSC76027 forms a stable ternary complex with EctopoIcc. EctopoI investigated here also serves as a model system for investigating a complex of topoisomerase and DNA in which DNA is covalently attached to the protein.  相似文献   
974.
The effect of support type on synthesis gas production using Co‐based catalysts supported over TiO2‐P25, Al2O3, SiO2, and CeO2 was investigated. The catalysts were prepared by the incipient wet impregnation method and characterized by various techniques for comparison. Experiments were performed in a micro tubular reactor. The results revealed that all Co‐supported catalysts produced synthesis gas ratios of 1 and below and, thus, proved to be well‐suited for methanol and Fischer‐Tropsch syntheses. Co catalysts supported over TiO2‐P25 and Al2O3 provided better synthesis gas ratios and stability performances. The promotion of a Co/TiO2‐P25 catalyst with Ce had a substantial influence on its catalytic activity and the amount of carbon deposit. A Ce‐promoted catalyst diminished markedly the extent of carbon deposition and thus boosted the performance towards better activity and stability.  相似文献   
975.
976.
977.
The development of materials in two-dimensions has been established as an effective approach to improve their thermoelectric performance for renewable energy production. In this article, we generated monolayers of the orthorhombic structured lead-chalcogenides PbX (X = S, Se, and Te) for room-temperature thermoelectric applications. The Density functional theory and semiclassical Boltzmann transport theory-based computational approaches have been adopted to carry out this study. The band structures of PbX monolayers exhibited narrow indirect bandgaps with a large density of states corresponding to their bandgap edges. Accordingly, substantial electrical conductivities and Seebeck coefficients have been obtained at moderate level doping that has caused significant thermoelectric power factors (PFs) and figures-of-merit (zT) ~1. The single-layered PbX showed anisotropic dispersion of electronic states in the band structure. A relatively lighter effective mass of charge carriers has been extrapolated from the bands oriented in the y-direction than that of the x-direction. As a result, the electrical conductivities and PFs have been observed larger in the y-direction. The optimum PFs recorded for single-layered PbS, PbSe, and PbTe in y-direction amounts to 9.90 × 1010 W/mK2s at 1.0 eV, 10.40 × 1010 W/mK2s at 0.82 eV, and 10.80 × 1010 W/mK2s 0.66 eV respectively. Moreover, a slight increase in p-type doping is found to improve the x-component of the PF, whereas n-type doping has led to improvement in the y-component of PF. Our results show an improved thermoelectric response of PbX monolayer (PbTe in particular) than their bulk counterparts reported in the literature, which indicates the promise of PbX monolayers for nanoscale thermoelectric applications at room temperature.  相似文献   
978.
Cardiovascular disease is the leading cause of death in the United States, accounting for nearly one in every seven deaths. Over the last decade, various targeted therapeutics have been introduced, but there has been no corresponding improvement in patient survival. Since the mortality rate of cardiovascular disease has not been significantly decreased, efforts have been made to understand the link between heart disease and novel therapeutic targets such as non-coding RNAs. Among multiple non-coding RNAs, long non-coding RNA (lncRNA) has emerged as a novel therapeutic in cardiovascular medicine. LncRNAs are endogenous RNAs that contain over 200 nucleotides and regulate gene expression. Recent studies suggest critical roles of lncRNAs in modulating the initiation and progression of cardiovascular diseases. For example, aberrant lncRNA expression has been associated with the pathogenesis of ischemic heart failure. In this article, we present a synopsis of recent discoveries that link the roles and molecular interactions of lncRNAs to cardiovascular diseases. Moreover, we describe the prevalence of circulating lncRNAs and assess their potential utilities as biomarkers for diagnosis and prognosis of heart disease.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号