首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741篇
  免费   53篇
  国内免费   1篇
电工技术   5篇
化学工业   228篇
金属工艺   5篇
机械仪表   15篇
建筑科学   22篇
矿业工程   1篇
能源动力   16篇
轻工业   252篇
水利工程   3篇
石油天然气   14篇
无线电   39篇
一般工业技术   90篇
冶金工业   40篇
自动化技术   65篇
  2023年   6篇
  2022年   27篇
  2021年   40篇
  2020年   25篇
  2019年   20篇
  2018年   22篇
  2017年   18篇
  2016年   24篇
  2015年   21篇
  2014年   29篇
  2013年   49篇
  2012年   43篇
  2011年   64篇
  2010年   30篇
  2009年   54篇
  2008年   42篇
  2007年   44篇
  2006年   31篇
  2005年   29篇
  2004年   17篇
  2003年   19篇
  2002年   24篇
  2001年   10篇
  2000年   12篇
  1999年   6篇
  1998年   18篇
  1997年   10篇
  1996年   7篇
  1995年   11篇
  1994年   10篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有795条查询结果,搜索用时 15 毫秒
21.
Determining relationships between different types of quantum correlations in open composite quantum systems is important since it enables the exploitation of a type by knowing the amount of another type. We here review, by giving a formal demonstration, a closed formula of the Bell function, witnessing nonlocality, as a function of the concurrence, quantifying entanglement, valid for a system of two noninteracting qubits initially prepared in extended Werner-like states undergoing any local pure-dephasing evolution. This formula allows for finding nonlocality thresholds for the concurrence depending only on the purity of the initial state. We then utilize these thresholds in a paradigmatic system where the two qubits are locally affected by a quantum environment with an Ohmic class spectrum. We show that steady entanglement can be achieved and provide the lower bound of initial state purity such that this stationary entanglement is above the nonlocality threshold thus guaranteeing the maintenance of nonlocal correlations.  相似文献   
22.
Background: The assessment of human epidermal growth factor receptor 2 (HER2) gene amplification is essential in order to identify those patients affected by advanced gastric cancer who may benefit from Trastuzumab targeted therapy. Materials and Methods: With the aim to investigate the concordance rate in HER2 status between primary gastric carcinoma (GC) and synchronous lymphnode metastases, we investigated HER2 status in a cohort of 108 surgical formalin-fixed paraffin-embedded specimens of GC and matched synchronous metastatic lymph nodes collected from three different units of Anatomic Pathology in southern of Italy. Fleiss-Cohen weighted k statistics were used to assess the concordance rate of HER2 status. Results: HER2 amplification was observed in 17% of primary GCs and the overall concordance rate with corresponding nodal metastases was 90.74%. Changes in HER2 status between primary GC and matched synchronous metastases were evidenced in 10 (9.26%) cases. Of these, 6 cases were HER2 amplified in the primary GC and not amplified in the metastases, while 4 were HER2 not amplified in the primary tumour and amplified in the lymph node metastases. Conclusions: Although at present the simultaneous determination of HER2 in advanced gastric cancer and corresponding metastatic lymph nodes is not mandatory, the possibility that the synchronous metastases of GC have a different HER2 status from that of the primary tumour is of remarkable significance; Indeed this may have influence on the therapeutic management and prognosis of the patients.  相似文献   
23.
Nanocomposites of biobased thermoplastic polyurethane (TPU) from dimer fatty acids and halloysite nanotubes (HNT) were elaborated by different melt processing routes such as direct mixing (1 step process) and masterbatch/dilution (2 steps process), at different temperatures (150 and 180 °C). Rheological and transmission electron microscopy (TEM) analyses indicated that the HNT distribution and dispersion were dependent on the processing conditions: the 2 steps process produced well dispersed nanocomposites and the masterbatch dilution at 180 °C improved the HNT distribution through the TPU. Consequently, a high reinforcement was achieved, with a 40% increase in the elastic modulus and 8 °C increase in the relaxation temperature related to the glass transition of the TPU soft segments. Furthermore, a percolated network was attained, even if a large extent of HNT breaking was observed during processing, suggesting that a synergistic effect between the HNT particles and the TPU's hard segments in the molten state occurred. Thus, HNT nanotubes can be seen as highly reinforcing nanofillers when good dispersion and distribution are achieved through the polymeric matrix.  相似文献   
24.
25.
The electrical and thermal behavior of epoxy composites reinforced with different contents of multi‐walled carbon nanotubes (from 0.1 to 0.4 wt% CNT) is studied when they are subjected to relatively high DC voltages (from 1 to 100 V). These materials obey Ohm's law, reaching values of electrical conductivity in the range of 0.01–0.5 S/m. The transported electric current leads to a significant increase of temperature, which is a result of the Joule heating effect. The temperature increases to 40ºC in CNT/epoxy composites when applying 100 V. The study of heating due to Joule's effect gives information about the electrical transport mechanisms implied. It is also confirmed that both, electrical conductivity and Joule's heating effect depend on the morphological features of the composites. The functionalization of CNTs decreases the electrical conductivity of composites but increases their corresponding Joule heating, due to the strong interface between the nanotubes and matrix, which hinders the formation of pathways in CNT in direct contact. The technique of CNT dispersion applied also affects to the increase of temperature induced by the electrical current. POLYM. ENG. SCI., 54:1976–1982, 2014. © 2013 Society of Plastics Engineers  相似文献   
26.
Cellulose nanocrystals (CNC) were successfully grafted with a low molecular weight poly(butylene glutarate) through an in situ polymerization procedure. The grafting treatment decreased the CNC hydrophilic character and increased the onset of their thermal degradation by approximately 20°C, thus increasing the possibilities of CNC application. Composites of grafted and nongrafted CNC with a poly(butylene‐adipate‐co‐terephthalate) (PBAT) matrix were prepared by melt extrusion. The CNC addition led to an increase of 50% of the tensile elastic modulus of the PBAT. In addition, dynamic mechanical thermal analysis showed that the composite with CNC retained its high modulus even at temperatures far above the glass transition temperature of PBAT. At 60°C the storage modulus of the composite with CNC was approximately 200% higher than that of the pure PBAT. Thus, in this work, nanocomposites of improved properties were obtained through a combination of in situ polymerization and melt extrusion. POLYM. ENG. SCI., 56:1339–1348, 2016. © 2016 Society of Plastics Engineers  相似文献   
27.
In nature 2-deoxy-D-ribose-5-phosphate aldolase (DERA) catalyses the reversible formation of 2-deoxyribose 5-phosphate from D-glyceraldehyde 3-phosphate and acetaldehyde. In addition, this enzyme can use acetaldehyde as the sole substrate, resulting in a tandem aldol reaction, yielding 2,4,6-trideoxy-D-erythro-hexapyranose, which spontaneously cyclizes. This reaction is very useful for the synthesis of the side chain of statin-type drugs used to decrease cholesterol levels in blood. One of the main challenges in the use of DERA in industrial processes, where high substrate loads are needed to achieve the desired productivity, is its inactivation by high acetaldehyde concentration. In this work, the utility of different variants of Pectobacterium atrosepticum DERA (PaDERA) as whole cell biocatalysts to synthesize 2-deoxyribose 5-phosphate and 2,4,6-trideoxy-D-erythro-hexapyranose was analysed. Under optimized conditions, E. coli BL21 (PaDERA C-His AA C49M) whole cells yields 99 % of both products. Furthermore, this enzyme is able to tolerate 500 mM acetaldehyde in a whole-cell experiment which makes it suitable for industrial applications.  相似文献   
28.
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.  相似文献   
29.
Cachexia is a multifactorial and multi-organ syndrome that is a major cause of morbidity and mortality in late-stage chronic diseases. The main clinical features of cancer-related cachexia are chronic inflammation, wasting of skeletal muscle and adipose tissue, insulin resistance, anorexia, and impaired myogenesis. A multimodal treatment has been suggested to approach the multifactorial genesis of cachexia. In this context, physical exercise has been found to have a general effect on maintaining homeostasis in a healthy life, involving multiple organs and their metabolism. The purpose of this review is to present the evidence for the relationship between inflammatory cytokines, skeletal muscle, and fat metabolism and the potential role of exercise training in breaking the vicious circle of this impaired tissue cross-talk. Due to the wide-ranging effects of exercise training, from the body to the behavior and cognition of the individual, it seems to be able to improve the quality of life in this syndrome. Therefore, studying the molecular effects of physical exercise could provide important information about the interactions between organs and the systemic mediators involved in the overall homeostasis of the body.  相似文献   
30.
Diabetes mellitus is a comprehensive expression to identify a condition of chronic hyperglycemia whose causes derive from different metabolic disorders characterized by altered insulin secretion or faulty insulin effect on its targets or often both mechanisms. Diabetes and atherosclerosis are, from the point of view of cardio- and cerebrovascular risk, two complementary diseases. Beyond shared aspects such as inflammation and oxidative stress, there are multiple molecular mechanisms by which they feed off each other: chronic hyperglycemia and advanced glycosylation end-products (AGE) promote ‘accelerated atherosclerosis’ through the induction of endothelial damage and cellular dysfunction. These diseases impact the vascular system and, therefore, the risk of developing cardio- and cerebrovascular events is now evident, but the observation of this significant correlation has its roots in past decades. Cerebrovascular complications make diabetic patients 2–6 times more susceptible to a stroke event and this risk is magnified in younger individuals and in patients with hypertension and complications in other vascular beds. In addition, when patients with diabetes and hyperglycemia experience an acute ischemic stroke, they are more likely to die or be severely disabled and less likely to benefit from the one FDA-approved therapy, intravenous tissue plasminogen activator. Experimental stroke models have revealed that chronic hyperglycemia leads to deficits in cerebrovascular structure and function that may explain some of the clinical observations. Increased edema, neovascularization, and protease expression as well as altered vascular reactivity and tone may be involved and point to potential therapeutic targets. Further study is needed to fully understand this complex disease state and the breadth of its manifestation in the cerebrovasculature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号