首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   13篇
  国内免费   3篇
电工技术   12篇
综合类   1篇
化学工业   84篇
金属工艺   4篇
机械仪表   23篇
建筑科学   29篇
能源动力   23篇
轻工业   33篇
水利工程   8篇
石油天然气   8篇
无线电   33篇
一般工业技术   57篇
冶金工业   12篇
原子能技术   11篇
自动化技术   61篇
  2023年   6篇
  2022年   13篇
  2021年   27篇
  2020年   31篇
  2019年   26篇
  2018年   44篇
  2017年   27篇
  2016年   27篇
  2015年   13篇
  2014年   17篇
  2013年   47篇
  2012年   27篇
  2011年   25篇
  2010年   15篇
  2009年   9篇
  2008年   18篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1990年   1篇
  1982年   1篇
排序方式: 共有399条查询结果,搜索用时 78 毫秒
81.
Manganese (Mn) is an important industrial mineral. Information about the chemical and phase constitution along with the concentration of impurities presented in Mn ore is compulsory in assessing its suitability for different applications. We performed the qualitative and quantitative analysis of low-grade Mn ore (LGMO) using laser-induced breakdown spectroscopy (LIBS) in conjunction with x-ray diffraction (XRD), x-ray fluorescence (XRF) and scanning electron microscopy (SEM) coupled with energy dispersive x-ray electron spectroscopy (EDS). The optical emission spectra of the LGMO sample displayed the presence of Mn, Si, Ca, Fe, Al, Mg, V, Ti, Sr, Ni, Na, Ba and Li. The plasma parameters, electron temperature and number density were estimated using the Boltzmann plot and Stark broadening line profile methods and were found to be 7500 K±750 K and 8.18±0.8×1017 cm−3, respectively. Quantitative analysis was performed using the calibration-free LIBS (CF-LIBS) method and its outcome along with XRD, XRF and SEM-EDS data showed almost analogous elemental composition, while the LIBS method gave acceptably precise elemental analysis by detecting the low atomic number element Li besides V and Sr. The results obtained using LIBS for the LGMO exhibited its ability as a powerful analytical tool and XRF, XRD and SEM-EDS as complementary methods for the compositional analysis of complex low-grade mineral ore.  相似文献   
82.
Comprehensive process planning is the key technology for linking design and the manufacturing process and is a rather complex and difficult task. Setup planning has a basic role in computer-aided process planning (CAPP) and significantly affects the overall cost and quality of machined parts. This paper presents a generative system and particle swarm optimisation algorithm (PSO) approach to the setup planning of a given part. The proposed approach and optimisation methodology analyses constraints such as the TAD (tool approach direction), the tolerance relation between features and feature precedence relations, to generate all possible process plans using the workshop resource database. Tolerance relation analysis has a significant impact on setup planning to obtain part accuracy. Based on technological constraints, the PSO algorithm approach, which adopts the feature-based representation, optimises the setup planning using cost indices. To avoid becoming trapped in local optima and to explore the search space extensively, several new operators have been developed to improve the particles’ movements, combined into a modified PSO algorithm. A practical case study is illustrated to demonstrate the effectiveness of the algorithm in optimising the setup planning.  相似文献   
83.
This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions using nanoparticle sorbents (TiO2, MgO, and Al2O3) with a range of experimental approaches. The maximum uptake values (sum of four metals) with multiple component solutions were 594.9, 114.6, and 49.4 mg g?1, for MgO, Al2O3, and TiO2, respectively. The sorption equilibrium isotherms were described using the Freundlich and Langmuir models. The best interpretation for experiment data was given by the Freundlich model for Cd2+, Cu2+, and Ni2+ in single- and multiple-component solutions. A first-order kinetic model adequately described the experimental data using MgO, Al2O3, and TiO2. SEM-EDX both before and after metal sorption and soil solution saturation indices (SI) in MgO nanoparticles indicated that the main sorption mechanism for heavy metals was attributable to adsorption and precipitation, whereas heavy metal sorption by TiO2 and Al2O3 adsorbents was due to adsorption. These nanoparticles may potentially be used as efficient sorbents for heavy metal removal from aqueous solutions. MgO nanoparticles were the most promising sorbents because of their high metal uptake.  相似文献   
84.
Prediction of viscoelastic behavior of polymers over a long‐term period is of vital importance for engineering applications. An attempt was made to uncover the interplay between the morphology and viscoelastic behavior of compatibilized polypropylene/ethylene vinyl acetate (EVA) copolymer blends in the presence of layered double hydroxide (LDH) nanoplatelets. The time–temperature superposition (TTS) principle and WLF equations were merged to obtain master curves of storage modulus at defined reference temperatures enabling prediction of storage modulus at high frequency ranges which are not experimentally measureable. Moreover, the creep compliance master curves were acquired for different reference temperatures to predict the creep compliance of nanocomposites over long period of times. It was found that the presence of LDH decreases the creep compliance at long period of times while it decreases the unrecoverable deformation of EVA domains. A simple mechanism was proposed to explain the creep and recovery behavior of samples blend at different temperatures. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46725.  相似文献   
85.
86.
A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve (SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods (STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.  相似文献   
87.
This paper presents a new simple luminous efficacy model for global horizontal irradiance. The objective is to derive values of outdoor global horizontal illuminance data from typical local weather station data including global horizontal irradiance and Humidity Ratio of outdoor air. The proposed luminous efficacy model incorporates, as the main influencing variable, the Clearness Factor, which is an original derivative from the Clearness Index. Two further variables are included in the model formulation. These are the Humidity Ratio and the solar altitude. Moreover, the model includes a location-dependent variable, which may be derived from the latitude information. The paper includes the result of the statistical analysis of the relationship between the model predictions and the measured data. The results of this analysis display a good agreement between predictions and measurements.  相似文献   
88.
Four different grades of commercial, high-impact polypropylene (hiPP) were fractionated by temperature-gradient extraction fractionation, and the chain structure and melting behavior of the fractions were studied by Fourier transform infrared spectroscopy and differential scanning calorimetry. Furthermore, the morphology of the disperse phase in the resins was characterized by scanning electron microscopy of the microtome-cut etched and original samples. The results show that there was a strong relation between the chain structure, content, and distribution of the dispersed phase and the mechanical properties of hiPP. These parameters of the elastomeric phase are really critical in reaching the best rigidity-impact balance in hiPP. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
89.
For the past few decades, there has been a considerable research interest in the area of biodegradable polymeric micro‐ and nanoparticles for tissue engineering, regenerative medicine, implants, stents, medical devices, and drug delivery systems. Poly(D,L ‐lactide‐co‐glycolide) (PLGA) is well‐known by its safety in biomedical preparations which has been approved for human use by the FDA. The goal of this study was to evaluate the influence of process parameters on size characteristics of PLGA microparticles prepared by oil in oil (o/o) solvent evaporation technique. This method has been introduced as one of the most appropriate methods for hydrophilic agents. Scanning electron microscopy showed that prepared particles were spherical with smooth surface without aggregation. Particle size varied from 570 nm to 29 μm in different experimental conditions. Stirring speed, polymer concentration, impeller type, and dropping size had a significant effect on the particle size. The polydispersity index of particles showed a strong relationship with the surfactant concentration, impeller type, and dropping size. It was concluded that increasing in temperature up to 50°C or changing in dropping rate has a little effect on reducing the size of PLGA particles. The residual solvent content in the final suspension was less than 0.1 ppm that is in appropriate range for biomedical application. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
90.
The conducting metal oxide (ZnO, Cu2O) films were used for fabrication of p-n heterojunction by rf sputtering and electrodeposition techniques respectively. The as synthesized films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV spectroscopy and electrical techniques. The electrical properties of the p-Cu2O/n-ZnO heterojunction were examined using the current-voltage measurements. The current-voltage (I-V) result showed that potential barrier was higher than the turn-on voltage, which was attributed to the presence of the interface defect states. The PN junction parameters such as ideality factor, barrier height, and series resistance were determined using conventional forward bias current-voltage characteristics. The annealing of Cu2O increase the crystallinity size and which enhance the photo current from 1.6 mA/cm2 to 3.7 mA/cm2. The annealing of respective film resulted in a decrease of these parameters with an increase in efficiency of solar cell from 0.14% to 0.3% at 350 degrees C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号