首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   34篇
  国内免费   1篇
电工技术   6篇
综合类   3篇
化学工业   124篇
金属工艺   8篇
机械仪表   11篇
建筑科学   9篇
矿业工程   2篇
能源动力   52篇
轻工业   60篇
水利工程   5篇
石油天然气   2篇
无线电   47篇
一般工业技术   117篇
冶金工业   20篇
原子能技术   1篇
自动化技术   104篇
  2024年   3篇
  2023年   14篇
  2022年   43篇
  2021年   88篇
  2020年   33篇
  2019年   43篇
  2018年   40篇
  2017年   30篇
  2016年   32篇
  2015年   18篇
  2014年   24篇
  2013年   40篇
  2012年   22篇
  2011年   18篇
  2010年   15篇
  2009年   15篇
  2008年   8篇
  2007年   8篇
  2006年   18篇
  2005年   7篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1976年   3篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有571条查询结果,搜索用时 15 毫秒
11.
Bilal Alatas  Erhan Akin   《Knowledge》2009,22(6):455-460
In this paper, classification rule mining which is one of the most studied tasks in data mining community has been modeled as a multi-objective optimization problem with predictive accuracy and comprehensibility objectives. A multi-objective chaotic particle swarm optimization (PSO) method has been introduced as a search strategy to mine classification rules within datasets. The used extension to PSO uses similarity measure for neighborhood and far-neighborhood search to store the global best particles found in multi-objective manner. For the bi-objective problem of rule mining of high accuracy/comprehensibility, the multi-objective approach is intended to allow the PSO algorithm to return an approximation to the upper accuracy/comprehensibility border, containing solutions that are spread across the border. The experimental results show the efficiency of the algorithm.  相似文献   
12.
13.
Binary image representation is essential format for document analysis. In general, different available binarization techniques are implemented for different types of binarization problems. The majority of binarization techniques are complex and are compounded from filters and existing operations. However, the few simple thresholding methods available cannot be applied to many binarization problems. In this paper, we propose a local binarization method based on a simple, novel thresholding method with dynamic and flexible windows. The proposed method is tested on selected samples called the DIBCO 2009 benchmark dataset using specialized evaluation techniques for binarization processes. To evaluate the performance of our proposed method, we compared it with the Niblack, Sauvola and NICK methods. The results of the experiments show that the proposed method adapts well to all types of binarization challenges, can deal with higher numbers of binarization problems and boosts the overall performance of the binarization.  相似文献   
14.
Nanocomposites of polyfuran (PF) and polythiophene (PTP) with montmorillonite clay (MMT) were prepared and modified by loading of polyaniline (PANI) and polypyrrole (PPY) moieties via polymerization of aniline (ANI) and pyrrole (PY) in aqueous dispersions of PF-MMT and PTP-MMT nanocomposites. Formation of PANI and PPY and their subsequent incorporation in the PF-MMT and PTP-MMT composites was confirmed by FTIR absorption studies. X-ray diffraction (XRD) patterns of PANI and PPY modified PF-MMT and PTP-MMT composites showed that PF-MMT and PTP-MMT intercalates were still present in the modified composites. Scanning electron microscopic analysis revealed distinctive morphological patterns of the various composite particles. The dc conductivity values of PANI and PPY modified PF-MMT and PTP-MMT composites were in the order of 10−2 S/cm in either system – a value much improved compared to the same for both of the unmodified PF-MMT (10−7 S/cm) and PTP-MMT (10−5 S/cm) nanocomposites respectively.  相似文献   
15.
Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF‐TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF‐TNTs by using commercial and cheaper materials for cost‐effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye‐sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer‐Emmett‐Teller (BET), electrochemical impedance spectrum, incident‐photon‐to‐current efficiency, and intensity‐modulated photocurrent spectroscopy/intensity‐modulated photovoltage spectroscopy characterizations are proving the functionality of HF‐TNTs for DSSCs. HF‐TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C‐TNTs). The DSSCs having HF‐TNT and its composite‐based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC, quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N‐719 dye is achieved, for 1D‐based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye‐sensitized solar cells, Li‐ion batteries, photocatalysis process, ion‐exchange/adsorption process, and photoelectrochemical devices.  相似文献   
16.
Knowledge of materials' thermal‐transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon‐boundary‐scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap‐emission over excitation‐laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM‐based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal‐transport properties. It is anticipated that this novel technique to enable an efficient single‐cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single‐cell thermal‐transport properties.  相似文献   
17.

Heat and mass transfer effects in three-dimensional mixed convection flow of viscoelastic fluid over a stretching surface with convective boundary conditions are investigated. The fluid is electrically conducting in the presence of constant applied magnetic field. Conservation laws of energy and concentration are based upon the Soret and Dufour effects. First order chemical reaction effects are also taken into account. By using the similarity transformations, the governing boundary layer equations are reduced into the ordinary differential equations. The transformed boundary layer equations are computed for the series solutions. Dimensionless velocity, temperature, and concentration distributions are shown graphically for different values of involved parameters. Numerical values of local Nusselt and Sherwood numbers are computed and analyzed. It is found that the behaviors of viscoelastic, mixed convection, and concentration buoyancy parameters on the Nusselt and Sherwood numbers are similar. However, the Nusselt and Sherwood numbers have qualitative opposite effects for Biot number, thermophoretic parameter, and Soret-Dufour parameters.

  相似文献   
18.
In this article, a ternary WO3/g‐C3N4@ BiVO4 composites were prepared using eco‐friendly hydrothermal method to produce efficient hydrogen energy through water in the presence of sacrificial agents. The prepared samples were characterized by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), ultraviolet‐visible (UV‐vis), Brunauer‐Emmett‐Teller (BET) surface area, and photoluminescence spectroscopy (PL) emission spectroscopy. The experimental study envisages the formation of 2‐D nanostructures and observed that such kinds of nanostructures could provide more active sites for photocatalytic reduction of water and their inherent reactive‐species mechanism. The results showed the excellent photocatalytic performance (432 μmol h?1 g?1) for 1.5% BiVO4 nanoparticles in WO3/g‐C3N4 composite when compared with pure WO3 and BiVO4. The optical properties and photocatalytic activity measurement confirmed that BiVO4 nanoparticles in WO3/g‐C3N4 photocatalyst inhibited the recombination of photogenerated electron and holes and enhanced the reduction reactions for H2 production. The enhanced photocatalytic efficiency of the composite nanostructures may be attributed to wide absorption region of visible light, large surface area, and efficient separation of electrons/holes pairs owing to synergistic effects between BiVO4 and WO3/g‐C3N4. The prepared samples would be a precise optimal photocatalyst to increase their suppliers for worldwide applications especially in energy harvesting.  相似文献   
19.
Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.  相似文献   
20.
Decaffeination of food and beverage products is in high demand. In this study, a caffeine-degrading bacterium Burkholderia spp. was isolated from coffee plantation area of Chiang Mai province of Thailand. The bacterial isolates were first identified by morphological, physiological, and biochemical tests followed by 16S rDNA analysis. The bacterial isolate of Burkholderia spp. showed 45.5% of caffeine degradation in caffeine containing media (2.5 g/L) after 110 h of incubation period. Burkholderia spp. showed only 2.6% caffeine degradation when exposed to high concentrations of caffeine containing medium (20 g/L). The growth rate of Burkholderia spp. declined with the increase in the caffeine concentration, which indicated the inhibiting effect of caffeine at very high concentrations. The maximum growth rate of 0.053 h?1 was observed at 2.5 g/L of caffeine. Overall due to high caffeine tolerance and biodegradation of caffeine, Burkholderia spp. can be effectively used to degrade caffeine from agro-industrial wastes targeted for value added food applications and environmental remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号