首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   5篇
电工技术   1篇
化学工业   7篇
机械仪表   2篇
能源动力   2篇
轻工业   15篇
水利工程   1篇
石油天然气   4篇
无线电   6篇
一般工业技术   25篇
冶金工业   1篇
原子能技术   1篇
自动化技术   43篇
  2024年   1篇
  2023年   11篇
  2022年   16篇
  2021年   11篇
  2020年   7篇
  2019年   10篇
  2018年   3篇
  2017年   8篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1989年   2篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
101.
Carrageenan is an algal-originated group of polysaccharides with unusual structural and functional capabilities, desired for different biomimetic applications due to their renewable, biocompatible, and biodegradable nature. Carrageenan-based hybrids (nano-/biocomposites) with different biopolymers and nano-structured materials have been widely reported as potential candidates for bone/cartilage tissue engineering, delivery of drugs/bioactive ingredients, wound healing, and 3D bioprinting applications. Owning to the broad-scale biomimetic applications of carrageenan-based materials, this review aims to summarize carrageenan chemistry and distinct physicochemical features of biopolymeric and/or nanostructured materials-based on carrageenans in a detailed manner. Herein, different biopolymers (such as chitosan, cellulose, starch, and alginates), and nano-structured materials (such as silica nanoparticles, magnetic/non-magnetic nanocarriers, graphene oxide nanoparticles, carbon nanotubes/nanorods, metal oxide nanoparticles) are comprehensively described in combination with carrageenan. However, carrageenan toxicity studies have presented major challenges that need to be addressed when using carrageenan-based materials for biomedical and therapeutic purposes. Several existing challenges, prospects, and research recommendations are described at the end of this review.  相似文献   
102.
Natural Language Processing (NLP) for the Arabic language has gained much significance in recent years. The most commonly-utilized NLP task is the ‘Text Classification’ process. Its main intention is to apply the Machine Learning (ML) approaches for automatically classifying the textual files into one or more pre-defined categories. In ML approaches, the first and foremost crucial step is identifying an appropriate large dataset to test and train the method. One of the trending ML techniques, i.e., Deep Learning (DL) technique needs huge volumes of different types of datasets for training to yield the best outcomes. The current study designs a new Dice Optimization with a Deep Hybrid Boltzmann Machine-based Arabic Corpus Classification (DODHBM-ACC) model in this background. The presented DODHBM-ACC model primarily relies upon different stages of pre-processing and the word2vec word embedding process. For Arabic text classification, the DHBM technique is utilized. This technique is a hybrid version of the Deep Boltzmann Machine (DBM) and Deep Belief Network (DBN). It has the advantage of learning the decisive intention of the classification process. To adjust the hyperparameters of the DHBM technique, the Dice Optimization Algorithm (DOA) is exploited in this study. The experimental analysis was conducted to establish the superior performance of the proposed DODHBM-ACC model. The outcomes inferred the better performance of the proposed DODHBM-ACC model over other recent approaches.  相似文献   
103.
Nanocrystalline ZnO sponges doped with 5 mol% EuO1.5 are obtained by heating metal–salt complex based precursor pastes at 200–900 °C for 3 min. X-ray diffraction, transmission electron microscopy, and extended X-ray absorption fine structure (EXAFS) show that phase separation into ZnO:Eu and c-Eu2O3 takes place upon heating at 700 °C or higher. The unit cell of the clean oxide made at 600 °C shows only ≈0.4% volume increase versus undoped ZnO, and EXAFS shows a ZnO local structure that is little affected by the Eu-doping and an average Eu3+ ion coordination number of ≈5.2. Comparisons of 23 density functional theory-generated structures having differently sized Eu-oxide clusters embedded in ZnO identify three structures with four or eight Eu atoms as the most energetically favorable. These clusters exhibit the smallest volume increase compared to undoped ZnO and Eu coordination numbers of 5.2–5.5, all in excellent agreement with experimental data. ZnO defect states are crucial for efficient Eu3+ excitation, while c-Eu2O3 phase separation results in loss of the characteristic Eu3+ photoluminescence. The formation of molecule-like Eu-oxide clusters, entrapped in ZnO, proposed here, may help in understanding the nature of the unexpected high doping levels of lanthanide ions in ZnO that occur virtually without significant change in ZnO unit cell dimensions.  相似文献   
104.
105.
The term ‘corpus’ refers to a huge volume of structured datasets containing machine-readable texts. Such texts are generated in a natural communicative setting. The explosion of social media permitted individuals to spread data with minimal examination and filters freely. Due to this, the old problem of fake news has resurfaced. It has become an important concern due to its negative impact on the community. To manage the spread of fake news, automatic recognition approaches have been investigated earlier using Artificial Intelligence (AI) and Machine Learning (ML) techniques. To perform the medicinal text classification tasks, the ML approaches were applied, and they performed quite effectively. Still, a huge effort is required from the human side to generate the labelled training data. The recent progress of the Deep Learning (DL) methods seems to be a promising solution to tackle difficult types of Natural Language Processing (NLP) tasks, especially fake news detection. To unlock social media data, an automatic text classifier is highly helpful in the domain of NLP. The current research article focuses on the design of the Optimal Quad Channel Hybrid Long Short-Term Memory-based Fake News Classification (QCLSTM-FNC) approach. The presented QCLSTM-FNC approach aims to identify and differentiate fake news from actual news. To attain this, the proposed QCLSTM-FNC approach follows two methods such as the pre-processing data method and the Glove-based word embedding process. Besides, the QCLSTM model is utilized for classification. To boost the classification results of the QCLSTM model, a Quasi-Oppositional Sandpiper Optimization (QOSPO) algorithm is utilized to fine-tune the hyperparameters. The proposed QCLSTM-FNC approach was experimentally validated against a benchmark dataset. The QCLSTM-FNC approach successfully outperformed all other existing DL models under different measures.  相似文献   
106.
Applied linguistics is an interdisciplinary domain which identifies, investigates, and offers solutions to language-related real-life problems. The new coronavirus disease, otherwise known as Coronavirus disease (COVID-19), has severely affected the everyday life of people all over the world. Specifically, since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection, the country has initiated the appropriate preventive measures (like lockdown, physical separation, and masking) for combating this extremely transmittable disease. So, individuals spent more time on online social media platforms (i.e., Twitter, Facebook, Instagram, LinkedIn, and Reddit) and expressed their thoughts and feelings about coronavirus infection. Twitter has become one of the popular social media platforms and allows anyone to post tweets. This study proposes a sine cosine optimization with bidirectional gated recurrent unit-based sentiment analysis (SCOBGRU-SA) on COVID-19 tweets. The SCOBGRU-SA technique aimed to detect and classify the various sentiments in Twitter data during the COVID-19 pandemic. The SCOBGRU-SA technique follows data pre-processing and the Fast-Text word embedding process to accomplish this. Moreover, the BGRU model is utilized to recognise and classify sentiments present in the tweets. Furthermore, the SCO algorithm is exploited for tuning the BGRU method’s hyperparameter, which helps attain improved classification performance. The experimental validation of the SCOBGRU-SA technique takes place using a benchmark dataset, and the results signify its promising performance compared to other DL models.  相似文献   
107.
Hyperspectral remote sensing/imaging spectroscopy is a novel approach to reaching a spectrum from all the places of a huge array of spatial places so that several spectral wavelengths are utilized for making coherent images. Hyperspectral remote sensing contains acquisition of digital images from several narrow, contiguous spectral bands throughout the visible, Thermal Infrared (TIR), Near Infrared (NIR), and Mid-Infrared (MIR) regions of the electromagnetic spectrum. In order to the application of agricultural regions, remote sensing approaches are studied and executed to their benefit of continuous and quantitative monitoring. Particularly, hyperspectral images (HSI) are considered the precise for agriculture as they can offer chemical and physical data on vegetation. With this motivation, this article presents a novel Hurricane Optimization Algorithm with Deep Transfer Learning Driven Crop Classification (HOADTL-CC) model on Hyperspectral Remote Sensing Images. The presented HOADTL-CC model focuses on the identification and categorization of crops on hyperspectral remote sensing images. To accomplish this, the presented HOADTL-CC model involves the design of HOA with capsule network (CapsNet) model for generating a set of useful feature vectors. Besides, Elman neural network (ENN) model is applied to allot proper class labels into the input HSI. Finally, glowworm swarm optimization (GSO) algorithm is exploited to fine tune the ENN parameters involved in this article. The experimental result scrutiny of the HOADTL-CC method can be tested with the help of benchmark dataset and the results are assessed under distinct aspects. Extensive comparative studies stated the enhanced performance of the HOADTL-CC model over recent approaches with maximum accuracy of 99.51%.  相似文献   
108.
Journal of Mechanical Science and Technology - Innovations in the manufacturing industries assist to improve machinability of difficult to cut materials, such as nickel superalloys. Critical...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号