首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5106篇
  免费   598篇
  国内免费   11篇
电工技术   53篇
综合类   1篇
化学工业   1413篇
金属工艺   166篇
机械仪表   308篇
建筑科学   91篇
矿业工程   3篇
能源动力   243篇
轻工业   440篇
水利工程   9篇
石油天然气   1篇
无线电   1007篇
一般工业技术   1309篇
冶金工业   152篇
原子能技术   69篇
自动化技术   450篇
  2024年   4篇
  2023年   77篇
  2022年   64篇
  2021年   194篇
  2020年   139篇
  2019年   173篇
  2018年   212篇
  2017年   202篇
  2016年   235篇
  2015年   213篇
  2014年   317篇
  2013年   367篇
  2012年   421篇
  2011年   468篇
  2010年   338篇
  2009年   321篇
  2008年   357篇
  2007年   212篇
  2006年   184篇
  2005年   162篇
  2004年   186篇
  2003年   157篇
  2002年   132篇
  2001年   94篇
  2000年   84篇
  1999年   81篇
  1998年   89篇
  1997年   52篇
  1996年   40篇
  1995年   26篇
  1994年   22篇
  1993年   12篇
  1992年   14篇
  1991年   6篇
  1990年   15篇
  1989年   12篇
  1988年   3篇
  1987年   10篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有5715条查询结果,搜索用时 15 毫秒
41.
The surface alkaline hydrolysis of fibers made from poly(trimethylene terephthalate) (PTT) was studied after extruding the polymer at high spinning speeds from 2000 to 6000 m/min and heat setting in the range of temperatures from 100 to 180°C. Fiber weight loss increased with an increasing heat‐setting temperature but it was also dependent on the spinning speed. Some of the partially hydrolyzed fibers had a well‐developed, hydrophilic surface, and pore size in the range of 0.69 to 1.20 μm. The optimum reaction and morphological conditions for increasing porosity in PTT fibers depends on spinning speed and heat‐setting temperature. A temperature of 180°C is the upper limit for heat‐setting PTT filaments but seems to be the most effective for making porous fibers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1724–1730, 2004  相似文献   
42.
The synergistic effects of boron nitride (BN) powder and die on the rheology and processability of metallocene‐catalyzed low density polyethylene (mLDPE) were investigated. The processability in the extrusion process is closely related to the interfacial properties between the polymer melts and the die wall. BN powder was added to mLDPE to reduce the friction coefficient and surface energy. Adding 0.5 wt% BN powder to mLDPE was very effective in improving the processability and the extrudate appearance. To study the effect of die surface property, three different dies were applied in capillary extrusion. One was conventional tungsten carbide (TC) die, and the others were hot‐pressed BN (hpBN) die and hot‐pressed BN composite (hpBNC) die. The applications of these BN dies were quite effective in delaying surface melt fracture (sharkskin) and postponing gross melt fracture to higher shear rate compared to the TC die. These improvements result from the fact that BN dies reduce the wall shear stress significantly and promote slip. The synergistic effect of processability could be obtained when both BN powder and hpBN die were used together.  相似文献   
43.
The objective of this study was the production of rice husk flour (RHF) and wood flour (WF) filled polybutylene succinate (PBS) biocomposites as alternatives to cellulosic material filled conventional plastic (polyolefins) composites. PBS is one of the biodegradable polymers, made from the condensation reaction of 1,4‐butanediol and succinic acid that can be naturally degraded in the natural environment. We compared the mechanical properties between conventional plastics and agro‐flour–filled PBS biocomposites. We evaluated the biodegradability and mechanical properties of agro‐flour–filled PBS biocomposites according to the content and filler particle size of agro‐flour. As the agro‐flour loading was increased, the tensile and impact strength of the biocomposites decreased. As the filler particle size decreased, the tensile strength of the biocomposites increased but the impact strength decreased. The addition of agro‐flour to PBS produced a more rapid decrease in the tensile strength, notched Izod impact strength, and percentage weight loss of the biocomposites during the natural soil burial test. These results support the application of biocomposites as environmentally friendly materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1513–1521, 2005  相似文献   
44.
To reduce the effect of methanol permeated from the anode, the structure of the cathode was modified from a single layer with Pt black catalyst to two-layer with PtRh black and Pt black catalysts, respectively. The current density of the direct methanol fuel cell (DMFC) using the two-layer cathode was improved to 228 mA/cm-2 compared to that (180 mA/cm-2) of the DMFC using the single layer cathode at 0.3 V and 303 K. From the cyclic voltammograms (CVs), it is indicated that the amount of adsorbates on the metal catalyst in the two-layer cathode is less than that of adsorbates in the single layer cathode after methanol test. In addition, the adsorbates were removed very rapidly by electrochemical oxidation from the two-layer cathode. It is suggested fromex situ X-ray absorption near edge structure analysis that the d-electron vacancy of Pt atom in the two-layer cathode is not changed by the methanol test. Thus, Pt is not covered with the adsorbates, which agrees well with the results of CV.  相似文献   
45.
Sweet potato pulp (SSP) obtained as a by‐product from starch extraction was blended with polycaprolactone (PCL) to prepare a biodegradable plastic material. In the blends, PCL was used as a reinforcing agent. The SPP/PCL blends were prepared by compression‐molding under high temperature and pressure, at different SPP/PCL ratios, and the mechanical properties of the molded specimens were tested. Matrix structure and thermal properties were measured by using a Fourier transform infrared (FTIR) spectrophotometer, scanning electron microscope (SEM), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). Mechanical properties (tensile and flexural properties) were also measured to find the most suitable ratio in a SSP/PCL blend. During compression molding of the SPP/PCL blends under high pressure and temperature, chemical reaction occurred between SPP and PCL, and thus, thermal stability and mechanical strength of the blends increased and water uptake decreased. Also, by increasing the PCL content in the blend, the matrix in the blend became more homogeneous, and consequently, mechanical strength of the molded specimen increased. At 7/3 or 6/4 weight ratio of SSP/PCL, water uptake of the molded specimen became substantially less than that at 8/2. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 861–866, 2004  相似文献   
46.
Flexible heaters were prepared by extruding platinum‐catalyzed silicone rubber composites with conductive carbon black (CB) and metallic fillers. The conductor resistivity of the extruded heaters decreased in order of conductive titanium dioxide (TiO2) > aluminum powder ≈ zinc powder > copper powder. Thermoelectric switching phenomena were investigated for the silicone rubber/CB/metallic powder systems. The positive temperature coefficient effect was dependent mainly on the CB content rather than on the content of the metallic powders. Resistivity and thermal reproducibility of the extruded heaters were also investigated by periodically applying AC voltage of 110 V. The heaters containing copper and TiO2 powders exhibited excellent electrical reproducibility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1122–1128, 2005  相似文献   
47.
In this research, we develop a new fault identification method for kernel principal component analysis (kernel PCA). Although it has been proved that kernel PCA is superior to linear PCA for fault detection, the fault identification method theoretically derived from the kernel PCA has not been found anywhere. Using the gradient of kernel function, we define two new statistics which represent the contribution of each variable to the monitoring statistics, Hotelling's T2and squared prediction error (SPE) of kernel PCA, respectively. The proposed statistics which have similar concept to contributions in linear PCA are directly derived from the mathematical formulation of kernel PCA and thus they are straightforward to understand. The main contribution of this work is that we firstly suggest a fault identification method especially applicable to process monitoring using kernel PCA. To demonstrate the performance, the proposed method is applied to two simulated processes, one is a simple nonlinear process and the other is a non-isothermal CSTR process. The simulation results show that the proposed method effectively identifies the source of various types of faults.  相似文献   
48.
β-SiC powder containing 6 wt% A12O3 and 4 wt% Y2O3 as sintering additives was pressureless sintered at 2000°C for 1 h (AYE-SiC) and 3 h (AYP-SiC). AYE-SiC consisted of an equiaxed grain structure and AYP-SiC exhibited a micro-structure with platelike grains as a result of grain growth related to β→α phase transformation during sintering, R -curve behavior and flaw tolerance for these silicon carbides were evaluated by the indentation-strength technique. For comparison, the R -curve behavior of conventional sintered, boron- and carbon-doped SiC (SS-SiC) was evaluated. AYE-SiC and AYP-SiC exhibited rising R -curve behavior with toughening exponents of m = 0.042 and m = 0.135, respectively. AYP-SiC exhibited better flaw tolerance and more sharply rising R -curve behavior than AYE-SiC. The more sharply rising R -curve behavior and the better flaw tolerance of AYP-SiC were attributed mainly to grain bridging of crack faces by platelike grains. Because of the high degree of transgranular fracture, SS-SiC exhibited a flat R -curve despite a microstructural feature with platelike grains.  相似文献   
49.
The important mechanical mechanism for the electrical conduction of anisotropic conductive films (ACFs) is the joint clamping force after the curing and cooling processes of ACFs. In this study, the mechanism of shrinkage and contraction stress and the relationship between these mechanisms and the thermomechanical properties of ACFs were investigated in detail. Both thickness shrinkages and modulus changes of four kinds of ACFs with different thermomechanical properties were experimentally investigated with thermomechanical and dynamic mechanical analysis. Based on the incremental approach to linear elasticity, contraction stresses of ACFs developed along the thickness direction were estimated. Contraction stresses in ACFs were found to be significantly developed by the cooling process from the glass‐transition temperature to room temperature. Moreover, electrical characteristics of ACF contact during the cooling process indicate that the electrical conduction of ACF joint is robustly maintained by substantial contraction stress below Tg. The increasing rate of contraction stresses below Tg was strongly dependent on both thermal expansion coefficient (CTE) and elastic modulus (E) of ACFs. A linear relationship between the experimental increasing rate and E × CTE reveals that the build‐up behavior of contraction stress is closely correlated with the ACF material properties: thermal expansion coefficient, glassy modulus, and Tg. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2634–2641, 2004  相似文献   
50.
A series of aromatic polyimides composed of well‐defined conjugation units were synthesized form 5,5′‐bis(4‐aminophenyl)‐2,2′‐bifuryl (PFDA) and 2,2′‐bis(furyl) benzidine (FurylBZ) with various dianhydrides. The synthesized polyimides emit blue to green light with a quantum yield of 7.3–14.9%, depending on the polymer backbone. In particular, PFDA‐based polymers exhibit extremely narrow photo‐luminescence. The structure, thermal stability, refractive index and dielectric properties of the polymer films were also determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号