首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49649篇
  免费   2488篇
  国内免费   156篇
电工技术   708篇
综合类   65篇
化学工业   10594篇
金属工艺   2136篇
机械仪表   3241篇
建筑科学   1101篇
矿业工程   25篇
能源动力   2111篇
轻工业   3887篇
水利工程   271篇
石油天然气   88篇
武器工业   2篇
无线电   7834篇
一般工业技术   10663篇
冶金工业   3881篇
原子能技术   658篇
自动化技术   5028篇
  2024年   50篇
  2023年   570篇
  2022年   870篇
  2021年   1484篇
  2020年   1070篇
  2019年   1176篇
  2018年   1429篇
  2017年   1413篇
  2016年   1750篇
  2015年   1294篇
  2014年   2088篇
  2013年   3006篇
  2012年   3265篇
  2011年   3890篇
  2010年   2814篇
  2009年   2922篇
  2008年   2812篇
  2007年   2185篇
  2006年   2031篇
  2005年   1723篇
  2004年   1571篇
  2003年   1513篇
  2002年   1329篇
  2001年   1134篇
  2000年   996篇
  1999年   928篇
  1998年   1557篇
  1997年   991篇
  1996年   803篇
  1995年   557篇
  1994年   461篇
  1993年   406篇
  1992年   290篇
  1991年   274篇
  1990年   258篇
  1989年   241篇
  1988年   205篇
  1987年   168篇
  1986年   119篇
  1985年   115篇
  1984年   92篇
  1983年   63篇
  1982年   38篇
  1981年   39篇
  1980年   30篇
  1979年   31篇
  1978年   30篇
  1977年   38篇
  1976年   61篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
Radiocarbon ((14)C) is an ideal tracer for in vivo human ADME (absorption, distribution, metabolism, elimination) and PBPK (physiological-based pharmacokinetic) studies. Living plants peferentially incorporate atmospheric (14)CO(2) versus (13)CO(2) versus (12)CO(2), which result in unique signature. Furthermore, plants and the food chains they support also have unique carbon isotope signatures. Humans, at the top of the food chain, consequently acquire isotopic concentrations in the tissues and body fluids depending on their dietary habits. In preparation of ADME and PBPK studies, 12 healthy subjects were recruited. The human baseline (specific to each individual and their diet) total carbon (TC) and carbon isotope (13)C (δ(13)C) and (14)C (F(m)) were quantified in whole blood (WB), plasma, washed red blood cell (RBC), urine, and feces. TC (mg of C/100 μL) in WB, plasma, RBC, urine, and feces were 11.0, 4.37, 7.57, 0.53, and 1.90, respectively. TC in WB, RBC, and feces was higher in men over women, P < 0.05. Mean δ(13)C were ranked low to high as follows: feces < WB = plasma = RBC = urine, P < 0.0001. δ(13)C was not affected by gender. Our analytic method shifted δ(13)C by only ±1.0 ‰ ensuring our F(m) measurements were accurate and precise. Mean F(m) were ranked low to high as follows: plasma = urine < WB = RBC = feces, P < 0.05. F(m) in feces was higher for men over women, P < 0.05. Only in WB, (14)C levels (F(m)) and TC were correlated with one another (r = 0.746, P < 0.01). Considering the lag time to incorporate atmospheric (14)C into plant foods (vegetarian) and or then into animal foods (nonvegetarian), the measured F(m) of WB in our population (recruited April 2009) was 1.0468 ± 0.0022 (mean ± SD), and the F(m) of WB matched the (extrapolated) atmospheric F(m) of 1.0477 in 2008. This study is important in presenting a procedure to determine a baseline for a study group for human ADME and PBPK studies using (14)C as a tracer.  相似文献   
953.
The present study evaluated visible-light photocatalysis, applying an annular reactor coated with unmodified or nitrogen (N)-doped titanium dioxide (TiO(2)), to cleanse gaseous volatile organic compounds (VOCs) at indoor levels. The surface chemistry investigation of N-doped TiO(2) suggested that there was no significant residual of sulfate ions or urea species on the surface of the N-doped TiO(2). Under visible-light irradiation, the photocatalytic technique using N-doped TiO(2) was much superior to that for unmodified TiO(2) for the degradation of VOCs. Moreover, the degradation efficiency by a reactor coated with N-doped TiO(2) was well above 90% for four target compounds (ethyl benzene, o,m,p-xylenes), suggesting that this photocatalytic system can be effectively employed to cleanse these pollutants at indoor air quality (IAQ) levels. The degradation efficiency of all target compounds increased as the stream flow rate (SFR) decreased. For most target compounds, a reactor with a lower hydraulic diameter (HD) exhibited elevated degradation efficiency. The result on humidity effect suggested that the N-doped photocatalyst could be employed effectively to remove four target compounds (ethyl benzene, o,m,p-xylenes) under conditions of less humidified environments, including a typical indoor comfort range (50-60%). Consequently, it is suggested that with appropriate photocatalytic conditions, a visible-light-assisted N-doped photocatalytic system is clearly an important tool for improving IAQ.  相似文献   
954.
Charge carrier transport in multilayer van der Waals (vdW) materials, which comprise multiple conducting layers, is well described using Thomas–Fermi charge screening (λTF) and interlayer resistance (Rint). When both effects occur in carrier transport, a channel centroid migrates along the c‐axis according to a vertical electrostatic force, causing redistribution of the conduction centroid in a multilayer system, unlike a conventional bulk material. Thus far, numerous unique properties of vdW materials are discovered, but direct evidence for distinctive charge transport behavior in 2D layered materials is not demonstrated. Herein, the distinctive electron conduction features are reported in a multilayer rhenium disulfide (ReS2), which provides decoupled vdW interaction between adjacent layers and much high interlayer resistivity in comparison with other transition‐metal dichalcogenides materials. The existence of two plateaus in its transconductance curve clearly reveals the relocation of conduction paths with respect to the top and bottom surfaces, which is rationalized by a theoretical resistor network model by accounting of λTF and Rint coupling. The effective tunneling distance probed via low‐frequency noise spectroscopy further supports the shift of electron conduction channel along the thickness of ReS2.  相似文献   
955.
A facile one-pot synthesis of a water-soluble MnO nanocolloid (i.e., D-glucuronic acid-coated MnO nanoparticle) is presented. The MnO nanoparticle in the MnO nanocolloid was coated with a biocompatible and hydrophilic D-glucuronic acid, and its particle diameter was nearly monodisperse and ranged from 2 to 3 nm. The average hydrodynamic diameter of the MnO nanocolloid was estimated to be 5 nm. The MnO nanoparticle was nearly paramagnetic down to T=3 K. The MnO nanocolloid showed a high longitudinal water proton relaxivity of r1=7.02 s(-1) mM(-1) with the r2/r1 ratio of 6.83 due to five unpaired S-state electrons of Mn(II) ion (S=5/2) as well as a high surface to volume ratio of the MnO nanoparticle. High contrast in vivo T1 MR images were obtained for various organs, showing the capability of the MnO nanocolloid as a sensitive T1 MRI contrast agent. The suggested three key-parameters which control the r1 and r2 relaxivities of nanocolloids (i.e., the S value of a metal ion, the spin structure, and the surface to volume ratio of a nanoparticle) successfully accounted for the observed r1 and r2 relaxivities of the MnO nanocolloid.  相似文献   
956.
Gait recognition using active shape model and motion prediction   总被引:1,自引:0,他引:1  
Kim  D. Paik  J. 《Computer Vision, IET》2010,4(1):25-36
This study presents a novel, robust gait recognition algorithm for human identification from a sequence of segmented noisy silhouettes in a low-resolution video. The proposed recognition algorithm enables automatic human recognition from model-based gait cycle extraction based on the prediction-based hierarchical active shape model (ASM). The proposed algorithm overcomes drawbacks of existing works by extracting a set of relative model parameters instead of directly analysing the gait pattern. The feature extraction function in the proposed algorithm consists of motion detection, object region detection and ASM, which alleviate problems in the baseline algorithm such as background generation, shadow removal and higher recognition rate. Performance of the proposed algorithm has been evaluated by using the HumanID Gait Challenge data set, which is the largest gait benchmarking data set with 122 objects with different realistic parameters including viewpoint, shoe, surface, carrying condition and time.  相似文献   
957.
Compressed monodisperse emulsions in confined space exhibit highly ordered structures. The influence of the volume fraction and the confinement geometry on the organized structures is investigated and the mechanism by which structural transition occurs is studied. Based on the understanding of ordering behavior of compressed emulsions, a simple and high‐throughput method to fabricate monodisperse polyhedral microgels using the emulsions as the template is developed. By controlling the geometry of the confined spaces, a variety of shapes such as hexagonal prism, Fejes Toth honeycomb prism, truncated octahedron, pyritohedron, and truncated hexagonal trapezohedron are implemented. Moreover, the edge sharpness of each shape is controllable by adjusting the drop volume fraction. This design principle can be readily extended to other shapes and materials, and therefore provides a useful means to create polyhedral microparticles for both fundamental study and practical applications.  相似文献   
958.
Manufacturing processes for syntactic foams made of hollow microspheres and starch were studied. Various manufacturing parameters in relation to the “buoyancy method” were identified and inter-related. An equation based on unit-cell models with the minimum inter-microsphere distance concept for a relation between volume expansion rate of bulk microspheres in aqueous starch and microsphere size was derived and successfully used to predict experimental data. It was demonstrated that the inter-microsphere distance can be calculated numerically for microspheres with known statistical data. The equation relating between volume expansion rate and microsphere size was further extended to accommodate a relation between inter-microsphere distance and microsphere size but with limited accuracy for binders of low starch content. An alternative empirical linear equation for the relation between inter-microsphere distance and microsphere size is proposed for wider applications. A simple method for estimation of syntactic foam density prior to completion of manufacture is suggested. Shrinkage after molding of syntactic foam is discussed in relation with different stages such as slurry, dough and solid. A two-step manufacturing process involving molding and then forming is suggested for syntactic foam dimensional control.  相似文献   
959.
The purpose of this study is to improve the bone-bonding ability between titanium implants and living bone through the control of geometric design and chemical compositions of an implant surface. We compared the tissue healing response and resulting implant stability for three surface designs by characterizing the histological and mechanical properties of the healing tissue around smooth-surfaced Ti–6Al–4V (SS), CP-Ti plasma-spray-coated (PSC), alkali- and heat-treated (AHT) implants. The implants were transversely inserted into a dog thighbone and evaluated at 4, 8, and 12 weeks. Histological examination indicated that initial matrix mineralization leading to osseointegration occurred more rapidly with the AHT implant. During the 4, 8, and 12 week healing periods, new bone on the surface of AHT implant showed denser growth than that on the SS and PSC implants. The more extensive tissue integration and more rapid matrix mineralization with the AHT implant were reflected in the mechanical test data, which demonstrated superior attachment strength and interfacial stiffness for the AHT implant after healing for 4, 8 and 12 weeks of healing because of the mechanical interlocking in the micrometer sized rough surface and the large bonding area between bone and implant caused by the nanosized porous surface structure. Histological and mechanical data demonstrate that with the appropriate surface design selection, bone bone-bonding ability can be improved and can induce acceleration of the healing response, thereby improving the potential for implant osseointegration.  相似文献   
960.
There has been growing research interest in the use of molybdenum disulfide in the fields of optoelectronics and energy harvesting devices, by virtue of its indirect-to-direct band gap tunability. However, obtaining large area thin films of MoS2 for future device applications still remains a challenge. In the present study, the amounts of the precursors (S and MOO3) were varied systematically in order to optimize the growth of highly crystalline and large area MoS2 layers by the chemical vapor deposition method. Careful control of the amounts of precursors was found to the key factor in the synthesis of large area highly crystalline flakes. The thickness of the layers was confirmed by Raman spectroscopy and atomic force microscopy. The optical properties and chemical composition were studied by photoluminescence (PL) and X-ray photoelectron spectroscopy. The emergence of strong direct excitonic emissions at 1.82 eV (A-exciton, with a normalized PL intensity of -55 × 10^3) and 1.98 eV (B-exciton, with a normalized PL intensity of -5 × 10^3) of the sample at room temperature clearly indicates the high luminescence quantum efficiency. The mobility of the films was found to be 0.09 cm^2/(V.s) at room temperature. This study provides a method for the controlled synthesis of high-quality two-dimensional (2D) transition metal dichalcogenide materials, useful for applications in nanodevices, optoelectronics and solar energv conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号