全文获取类型
收费全文 | 1263篇 |
免费 | 112篇 |
国内免费 | 12篇 |
专业分类
电工技术 | 30篇 |
综合类 | 6篇 |
化学工业 | 374篇 |
金属工艺 | 62篇 |
机械仪表 | 53篇 |
建筑科学 | 55篇 |
矿业工程 | 5篇 |
能源动力 | 102篇 |
轻工业 | 108篇 |
水利工程 | 18篇 |
石油天然气 | 17篇 |
无线电 | 95篇 |
一般工业技术 | 270篇 |
冶金工业 | 31篇 |
原子能技术 | 12篇 |
自动化技术 | 149篇 |
出版年
2024年 | 5篇 |
2023年 | 18篇 |
2022年 | 32篇 |
2021年 | 83篇 |
2020年 | 79篇 |
2019年 | 75篇 |
2018年 | 113篇 |
2017年 | 91篇 |
2016年 | 87篇 |
2015年 | 54篇 |
2014年 | 85篇 |
2013年 | 147篇 |
2012年 | 97篇 |
2011年 | 110篇 |
2010年 | 96篇 |
2009年 | 63篇 |
2008年 | 45篇 |
2007年 | 31篇 |
2006年 | 18篇 |
2005年 | 10篇 |
2004年 | 2篇 |
2003年 | 8篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 9篇 |
1997年 | 3篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1976年 | 2篇 |
排序方式: 共有1387条查询结果,搜索用时 0 毫秒
51.
Evaluation of antimicrobial and dyeing properties of walnut (Juglans regia L.) green husk extract for cosmetics 下载免费PDF全文
Walnut green husk is one of the main waste products from walnut and could be used as a source of natural dyeing compounds such as juglone. The present study was conducted to evaluate the effective use of walnut green husk extract as a natural hair dye. Dyeing properties, fastness and antimicrobial behaviours of dyed hair and also a skin irritation test for natural hair dye on rat skin were examined. When the extract was mixed with ascorbic acid as a developer, ferrous sulphate as a mordant, and Aloe vera extract used as a secondary mordant and also a cosmetic ingredient, the reaction resulted in a dark‐brown colour on hair samples. The dyed hair exhibited appropriate colour strength having excellent morphology for a hair surface coated with dye molecules. In addition, the dyed hair possessed good resistance to washing and daylight fastness, without any irritant properties as shown in a rat model, although high concentrations of iron‐based mordant may be problematic for long‐term usage. This paper also suggests the use of natural mordants such as lactic and oxalic acids to avoid any probable risks. Walnut green husk extract was an appropriate natural hair dyeing agent in practice and showed maximum antimicrobial activity compared with semi‐synthetic and commercial hair dyes. The results demonstrated that walnut green husk can be used as an economical, valuable, eco‐friendly and safe source of dyeing and antimicrobial agents for cosmetic products. 相似文献
52.
The effect of substrate temperature on microstructural evolution and hardenability of tungsten carbide coating in hot filament chemical vapor deposition 下载免费PDF全文
Masoud Sabzi Seyyed Hashem Mousavi Anijdan Mohsen Asadian 《International Journal of Applied Ceramic Technology》2018,15(6):1350-1357
Effect of substrate temperature on microstructural evolution and hardenability of tungsten carbide coating produced by hot filament chemical vapor deposition (HFCVD) process was studied. Annealed sheets of 316L stainless steels were used as the substrate. HFCVD technique, with substrate temperatures of 400 and 500°C, was used to deposit tungsten carbide coating on these sheets. Field Emission Scanning Electron Microscope (FE‐SEM) was used to study the evolution of microstructure. X‐Ray Diffraction spectroscopy was used to analyze the phases formed and Raman spectroscopy was employed to differentiate molecular composition of the coatings. The amount of the porosity of the coatings was measured and Vickers hardness measurement was used for hardness assessment. Results show that the tungsten carbide coatings have a honeycomb structure and increasing the temperature of the substrate increases the amount of porosity of the coating. XRD results showed that 3 different crystalline structures containing W, WC, and W2C were formed in the coating deposited on the 316L stainless steel. Increasing the temperature of the deposition has increased the intensity of the peaks in the XRD results. Raman spectroscopy results indicated the presence of a carbon in the tungsten carbide coatings. Finally, microhardness of the tungsten carbide coating increases with increasing the temperature of the substrate. 相似文献
53.
Investigation of the effect of magnetic field on mass transfer parameters of CO2 absorption using Fe3O4‐water nanofluid 下载免费PDF全文
Mohammad Hossein Karimi Darvanjooghi Maedeh Pahlevaninezhad Ali Abdollahi Seyyed Mohammadreza Davoodi 《American Institute of Chemical Engineers》2017,63(6):2176-2186
In this study, the enhancement of physical absorption of carbon dioxide by Fe3O4‐water nanofluid under the influence of AC and DC magnetic fields was investigated. Furthermore, a gas‐liquid mass transfer model for single bubble systems was applied to predict mass transfer parameters. The coated Fe3O4 nanoparticles were prepared using co‐percipitation method. The results from characterization indicated that the nanoparticles surfaces were covered with hydroxyl groups and nanoparticles diameter were 10–13 nm. The findings showed that the mass transfer rate and solubility of carbon dioxide in magnetic nanofluid increased with an increase in the magnetic field strength. Results indicated that the enhancement of carbon dioxide solubility and average molar flux gas into liquid phase, particularly in the case of AC magnetic field. Moreover, results demonstrated that mass diffusivity of CO2 in nanofluid and renewal surface factor increased when the intensity of the field increased and consequently diffusion layer thickness decreased. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2176–2186, 2017 相似文献
54.
Ali Pourjavadi Mohammad Eskandari Seyed Hassan Hosseini Mojtaba Nazari 《国际聚合物材料杂志》2017,66(5):235-242
A noncovalent functionalization of the edges of reduced graphene oxide (RGO) with β-cyclodextrin-graft-hyperbranched polyglycerol (β-CD-g-HPG) was successfully performed via a host-guest interaction. The results showed that β-CD-g-HPG disperses the graphene sheets better than pure β-CD or HPG. The resulted supramolecular structure is stable in neutral water medium more than one week. However, in acidic medium the host-guest interaction is collapsed and graphene nanosheets precipitate. 相似文献
55.
Seyyed Ahmadreza Amirsadat Babak Moradi Ali Zeinolabedini Hezave Siamak Najimi Mehdi Hojjat Farsangi 《Korean Journal of Chemical Engineering》2017,34(12):3119-3124
Due to the vast production of crude oil and consequent pressure drops through the reservoirs, secondary and tertiary oil recovery processes are highly necessary to recover the trapped oil. Among the different tertiary oil recovery processes, foam injection is one of the most newly proposed methods. In this regard, in the current investigation, foam solution is prepared using formation brine, C19TAB surfactant and air concomitant with nano-silica (SiO2) as foam stabilizer and mobility controller. The measurements revealed that using the surfactant-nano SiO2 foam solution not only leads to formation of stable foam, but also can reduce the interfacial tension mostly considered as an effective parameter for higher oil recovery. Finally, the results demonstrate that there is a good chance of reducing the mobility ratio from 1.12 for formation brine and reservoir oil to 0.845 for foam solution prepared by nanoparticles. 相似文献
56.
Mahdi Abdollahi Mohammad Reza Yousefi Maral Ghahramani Heidar Ranjbar Fardin Seyyed Najafi 《Iranian Polymer Journal》2017,26(1):1-10
Emulsion polymerization of the butadiene (Bu) was performed in the presence of disproportionate potassium rosinate (DPR) as anionic emulsifier, potassium hydroxide (KOH), and potassium carbonate (K2CO3) as electrolytes, and three different initiators including potassium persulfate (KPS), 2,2′-azobisisobutyronitrile (AIBN) or 4,4′-azobis(4-cyanovaleric acid) (ACVA, also known as VAZO) at 70 °C. Latexes were prepared with a solid content of about 30 wt%. The particle size and its distribution were measured by dynamic light scattering (DLS) analysis, while the polymerization conversion was determined gravimetrically at different time intervals. Results on the emulsion polymerization of Bu in the presence of KOH and K2CO3 co-electrolytes showed that adding KOH to the reaction media decreases the polymerization rate. Positive effect of co-electrolytes on the control over polybutadiene latex (PBL) particles size and its distribution was also confirmed, where K2CO3 played roles as electrolyte and pH buffer and KOH served double roles as electrolyte and alkaline supplier of the reaction media. Complete solubility of the AIBN in Bu resulted in higher rate of polymerization in the presence of AIBN in comparison to other initiators, i.e., VAZO or KPS. The results showed that initiator type plays a significant role on the formation of PBL nanoparticles and kinetics of the polymerization. The kinetic studies revealed that emulsion polymerization of Bu follows case 1 (i.e., \(\bar{n}\) ?0.5, where \(\bar{n}\) indicates average number of the propagating chains per particle) of the Smith-Ewart kinetics. 相似文献
57.
F. Hosseini Seyed Hassan Jafari Hossein-Ali Khonakdar Majid Abdouss 《Polymer-Plastics Technology and Engineering》2019,58(7):732-741
This paper deals with influence of chitosan nanoparticles (CNPs) loaded by tetracycline, as a drug, on the physico-mechanical and antibacterial properties as well as drug release behavior of poly(vinyl alcohol), PVA, hydrogels prepared by electron beam irradiation. The formation of spherical chitosan particles in nanoscale size prepared by an ionic gelation method was confirmed by FTIR and UV spectroscopy, and scanning electron microscopy analyses. The drug release kinetic studies from drug loaded chitosan nanoparticles (DLCNPs) at pH = 7.4 revealed a linear and steady release behavior over long period of time. The theoretical analysis of the swelling kinetic data, using Peppas’s model showed that the swelling kinetic is governed by Fickian diffusion for all the prepared hydrogels, however, the water diffusion coefficient, and therefore, the swelling content were lower for the hydrogels loaded with DLCNPs as compared to the ones with the neat drug. In agreement with these results, the hydrogels containing DLCNPs exhibited a more controlled drug release behavior with significantly stronger antibacterial activity. The tensile mechanical properties of the hydrogels not affected by the DLCNPs were found to be suitable for wound dressing applications. 相似文献
58.
The potential energy profile of the reaction between dimethyl disulfide and OH? radicals is explored by utilizing ab initio and hybrid meta density functional theory methods. Having the energies and structural data of the stationary points, statistical rate theories, such as transition state theory and variable reaction coordinate-transition state theory, are employed to compute the overall rate constants, and discuss the mechanism and product channels. On the basis of the calculations, the overall rate coefficient is predicted to be 2.49?×?10?10?cm3?molecule?1?s?1 at 298?K. It is found that in the most favorable pathway, the reaction proceeds via formation of the relatively unstable intermediate CH3S?(OH)SCH3 decomposing rapidly to yield CH3S?+CH3SOH. 相似文献
59.
Reza Aliasgarian Malek Naderi Seyyed Ehsan Mirsalehi Saeed Safi 《Journal of Materials Engineering and Performance》2018,27(8):3900-3910
SiC coatings were generated on graphite using slurry sintering (SS) and pack cementation (PC). The samples’ ablation features were assessed by an oxyacetylene torch. The rates of mass ablation of the PC–SiC and SS–SiC coatings were approximated 2.17?×?10?3 and 9.52?×?10?3 g s?1, respectively, decreased by 84.1 and 29.6% compared to the uncoated samples. It was mainly attributed to the formation of a SiO2 layer on the surface. The continuous SiO2 molten film formed via the PC–SiC oxidation generates a sealing mechanism which can be an obstacle against the oxygen diffusion and hinder more ablation. This is while discontinuous SiO2 film formed from the thin SS–SiC cannot protect the graphite effectively. The non-isothermal oxidation test shows that without the SiC coating, the sample weight is lost largely from 25 to 1500 °C, and its weight loss was 2.2% after the TGA. However, after coating, the samples possessed excellent oxidation protection and weight losses of SS–SiC and PC–SiC coatings are down to 1.3 and 0.6%, respectively. The more oxidation of the graphite substrate occurred due to the formation of macrocracks in the coating during the TGA and also the formation of holes on SiO2 glass layer owing to release of CO or CO2. 相似文献
60.
P. Baghery M. Farzam A.B. Mousavi M. Hosseini 《Surface & coatings technology》2010,204(23):3804-10272
Ni-TiO2 nanocomposite coatings with various contents of TiO2 nanoparticles were prepared by electrodeposition in a Ni plating bath containing TiO2 nanoparticles to be codeposited. The influences of the TiO2 nanoparticle concentration in the plating bath, the current density and the stirring rate on the composition of nanocomposite coatings were investigated. The composition of coatings was studied by using energy dispersive X-ray system (EDX). The wear behavior of the pure Ni and Ni-TiO2 nanocomposite coatings were evaluated by a pin-on-disc tribometer. The corrosion performance of coatings in 0.5 M NaCl, 1 M NaOH and 1 M HNO3 as corrosive solutions was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods (EIS). The microhardness and wear resistance of the nanocomposite coatings increase with increasing of TiO2 nanoparticle content in the coating. With increasing of TiO2 nanoparticle content in the coating, the polarization resistance increases, the corrosion current decreases and the corrosion potential shifts to more positive values. 相似文献