首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1131篇
  免费   29篇
  国内免费   8篇
电工技术   12篇
综合类   2篇
化学工业   198篇
金属工艺   38篇
机械仪表   65篇
建筑科学   22篇
能源动力   68篇
轻工业   31篇
水利工程   2篇
石油天然气   3篇
无线电   155篇
一般工业技术   264篇
冶金工业   109篇
原子能技术   8篇
自动化技术   191篇
  2024年   8篇
  2023年   15篇
  2022年   45篇
  2021年   70篇
  2020年   46篇
  2019年   39篇
  2018年   50篇
  2017年   30篇
  2016年   48篇
  2015年   25篇
  2014年   40篇
  2013年   66篇
  2012年   46篇
  2011年   60篇
  2010年   39篇
  2009年   48篇
  2008年   49篇
  2007年   34篇
  2006年   45篇
  2005年   32篇
  2004年   29篇
  2003年   20篇
  2002年   20篇
  2001年   9篇
  2000年   14篇
  1999年   13篇
  1998年   22篇
  1997年   13篇
  1996年   19篇
  1995年   17篇
  1994年   18篇
  1993年   7篇
  1992年   9篇
  1991年   15篇
  1990年   6篇
  1989年   10篇
  1988年   14篇
  1987年   8篇
  1986年   6篇
  1985年   12篇
  1984年   10篇
  1982年   4篇
  1981年   7篇
  1980年   2篇
  1979年   8篇
  1978年   2篇
  1977年   4篇
  1976年   6篇
  1975年   3篇
  1974年   3篇
排序方式: 共有1168条查询结果,搜索用时 15 毫秒
951.
Methyl acrylate (A)/methyl methacrylate (B) copolymers of different compositions were synthesized in bulk at 50°C and the compositions were determined from 1H NMR spectra. Reactivity ratios were optimized using the least square methodology. Compositional and configurational assignments were done using two‐dimensional (2D) Heteronuclear Single Quantum Correlation (HSQC) and Total Correlation Spectroscopy (TOCSY) experiments. Methylene proton and carbon resonances were assigned for compositional and configurational sensitivity at tetrad level. Carbon resonances of methine group of methyl acrylate were assigned for compositional sensitivity up to triad level with the help of 2D HSQC spectra. α‐Methyl group of methyl methacrylate was assigned up to triad level of compositional and configurational placements for carbon and proton resonances by 2D HSQC spectroscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1437–1445, 2006  相似文献   
952.
In the present article, a comprehensive two‐dimensional heteronuclear multi bond correlation (HMBC) spectral analysis of methyl acrylate (A)/methyl methacrylate (B) copolymers is reported. The methylene carbon and methine carbon resonances assigned from the 2D HSQC spectroscopy were established by analyzing the two and three bond order couplings with α‐methyl protons, methylene protons, and methine protons. Quaternary carbon resonances of the B unit were assigned by investigating the two bond order couplings with α‐methyl protons and methylene protons. Assignments of carbonyl carbon resonances based on the analysis of three bond couplings with α‐methyl protons and methylene protons are reported. The analyses present comprehensive assignments of the carbonyl carbon resonances showing the critical contribution of 2D HMBC spectroscopy in the indirect analysis of carbon resonances. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   
953.
This paper presents multiobjective optimization of a typical 2-degree-of-freedom (DOF) parallel kinematic machine (PKM) tool that has only single DOF joints. Nondimensional indices, namely global stiffness index (GSI), global conditioning index (GCI), and workspace index, are considered as the objectives for optimization. The indices GSI and GCI depict the variation of stiffness and dexterity of PKM within the workspace. The leg length and distance between two rails on which actuators slide are treated as design variables as these greatly influence the characteristics of PKM. A multiobjective genetic algorithm (MOGA) approach is implemented in MATLAB to find an efficient solution to this complex optimization problem. Fitness function includes inverse kinematics equations, Jacobian and stiffness matrices to compute and optimize the nondimensional indices. First, the optimal value of each index is obtained by single-objective GA. To further improve the results, a hybrid function PATTERNSEARCH is used. This helps to select appropriate boundary conditions for MOGA. To obtain the optimal values of all the three indices, a multiobjective GA is carried out. The results are compared with a conventional exhaustive search method of optimization. The obtained results show that the use of MOGA enhances the quality of the optimization outcome. Secondly, a prototype has been designed and developed with the optimal dimensions. The actual workspace of the PKM and influence of leg collision on the workspace are studied. Finally, a preliminary experimentation was carried out. A comparison between PKM and the three-axis serial kinematic machine tool is presented.  相似文献   
954.
Recognition of abnormal patterns in control charts provides clues to reveal potential quality problems in the manufacturing processes. One potentially popular approach for recognizing different control chart patterns (CCPs) is to develop heuristics based on various shape features of the patterns. The advantage of this approach is that the users can easily understand how a particular pattern is identified. However, consistency in the recognition performance is found to be considerably poor in the heuristics approach. Since shape features represent the main characteristics of the patterns in a condensed form, artificial neural network (ANN) with features extracted from the process data as input vector representation can facilitate efficient pattern recognition with a smaller network size. In this paper, a set of seven shape features is selected, whose magnitudes are independent of the process mean and standard deviation under a special representation of the sampling interval in the control chart plot. Based on these features, the CCPs are recognized using a multilayered perceptron neural network trained by back-propagation algorithm. The recognizer can recognize all the eight commonly observed CCPs. Extensive performance evaluation of this recognizer is carried out using simulated pattern data. Numerical results indicate that the developed ANN recognizer can perform well in real time process control applications with respect to both recognition accuracy and consistency.  相似文献   
955.
Enhanced pool-boiling critical heat fluxes (CHF) at reduced wall superheat on nanostructured substrates are reported. Nanostructured surfaces were realized using a low temperature process, microreactor-assisted-nanomaterial-deposition. Using this technique we deposited ZnO nanostructures on Al and Cu substrates. We observed pool-boiling CHF of 82.5 W/cm2 with water as fluid for ZnO on Al versus a CHF of 23.2 W/cm2 on bare Al surface with a wall superheat reduction of 25–38 °C. These CHF values on ZnO surfaces correspond to a heat transfer coefficient of ~23,000 W/m2 K. We discuss our data and compare the behavior with conventional boiling theory.  相似文献   
956.
An analysis was made using the numerical approach of a transient laminar slip flow over an infinite vertical plate with ramped and constant temperatures in which chemical reaction is involved and thermal radiation had to be considered. Slip conditions have caused much concern because of their broad applicability in industry and chemical engineering. By following the finite element technique, the equation of momentum together with the equations of energy and species was numerically solved. The expressions for skin friction, Nusselt number, and Sherwood number are also derived. The variations in fluid velocity, fluid temperature, and species concentration are displayed graphically whereas numerical values of skin friction, Nusselt number, and Sherwood number are presented in tabular form for various values of the pertinent flow parameters. The findings indicate that the radiation has a noticeable impact to a minor intensity of R and is more apparent in the constant condition than in the ramped condition. Radiation and buoyancy effects produce a strong flow near the plate, which is accelerated by slip. Finally, it is shown logically and mathematically that when two buoyancies are opposite and equal in magnitude with equal solutal and thermal diffusions, the flow should be taken as stationary flow in the absence of radiation and the presence/absence of slip.  相似文献   
957.
958.
We assessed the water requirements of ethanol from corn grain and crop residue. Estimates are explicit in terms of sources-green (GW) and blue (BW) water, consumptive and nonconsumptive requirements across the lifecycle, including evapotranspiration, application and conveyance losses, biorefinery uses, and water use of energy inputs, and displaced requirements or credits due to coproducts. Ethanol consumes 50-146 L/vehicle kilometer traveled (VKT) of BW and 1-60 L/VKT of GW for irrigated corn and 0.6 L/VKT of BW and 70-137 L/VKT of GW for rain-fed corn after coproduct credits. Extending the system boundary to consider application and conveyance losses and the water requirements of embodied energy increases the total BW withdrawal from 23% to 38% and BW + GW consumption from 5% to 16%. We estimate that, in 2009, 15-19% of irrigation water is used to produce the corn required for ethanol in Kansas and Nebraska without coproduct credits and 8-10% after credits. Harvesting and converting the cob to ethanol reduces both the BW and GW intensities by 13%. It is worth noting that the use of GW is not without impacts, and the water quantity and water quality impacts at the local/seasonal scale can be significant for both fossil fuel and biofuel.  相似文献   
959.
A novel seed-mediated synthetic route to produce multibranched gold nanoparticles is reported, in which it is possible to precisely tune both their size and nanostructuration, while maintaining an accurate level of monodispersion. The nanoscale control of surface nanoroughness/branching, ranging from small bud-like features to elongated spikes, allows to obtain fine tuning of the nanoparticle optical properties, up to the red and near-IR region of the spectrum. Such anisotropic nanostructures were demonstrated to be excellent candidates for SERS applications, showing significantly higher signals with respect to the standard spherical nanoparticles.  相似文献   
960.
A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson–Kendall–Roberts and Derjagin–Muller–Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materials obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C3S, which is attributed to short hydration time (≤ 45 min) used in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号