首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1727篇
  免费   49篇
  国内免费   10篇
电工技术   19篇
化学工业   297篇
金属工艺   48篇
机械仪表   92篇
建筑科学   49篇
矿业工程   4篇
能源动力   61篇
轻工业   67篇
水利工程   5篇
石油天然气   11篇
无线电   216篇
一般工业技术   399篇
冶金工业   237篇
原子能技术   60篇
自动化技术   221篇
  2023年   21篇
  2022年   31篇
  2021年   37篇
  2020年   35篇
  2019年   30篇
  2018年   37篇
  2017年   31篇
  2016年   36篇
  2015年   24篇
  2014年   49篇
  2013年   108篇
  2012年   61篇
  2011年   96篇
  2010年   89篇
  2009年   72篇
  2008年   73篇
  2007年   69篇
  2006年   60篇
  2005年   34篇
  2004年   38篇
  2003年   43篇
  2002年   36篇
  2001年   28篇
  2000年   28篇
  1999年   22篇
  1998年   39篇
  1997年   35篇
  1996年   32篇
  1995年   32篇
  1994年   30篇
  1993年   25篇
  1992年   20篇
  1991年   29篇
  1990年   31篇
  1989年   21篇
  1988年   22篇
  1987年   21篇
  1986年   16篇
  1985年   18篇
  1984年   26篇
  1983年   20篇
  1982年   25篇
  1981年   21篇
  1980年   14篇
  1979年   17篇
  1978年   11篇
  1977年   19篇
  1976年   30篇
  1975年   6篇
  1973年   10篇
排序方式: 共有1786条查询结果,搜索用时 15 毫秒
41.
Tungsten nanopowders were synthesized by a low-temperature technique and then heat treated in a gaseous reductive atmosphere in order to study the phase evolution, crystallite size, and particle size of the powders as the heat treatment temperature was modified. Synthesis of the powders was carried out in aqueous media using NaBH4 as a reducing agent using careful control of the pH of the solutions. The XRD patterns of the as-synthesized powders showed an amorphous phase. After washing, energy dispersive spectroscopy showed that the powders had peaks for oxygen and tungsten. In order to promote crystallization and eliminate the oxygen, the powders were heat treated at 773 K, 923 K, and 1073 K (500 °C, 650 °C, and 800 °C) in a H2/CH4 reducing atmosphere for 2 hours. XRD after heat treatment showed α-W peaks for the powders treated at 1073 K and 923 K (800 °C and 650 °C) and a mixture of β-W and α-W for the powders treated at 773 K (500 °C). The crystallite sizes determined from X-ray peak broadening were 12, 16, and 20 nm, whereas the average particle sizes from dynamic light scattering were 260, 450, and 750 nm, for heat treatment temperatures of 773 K, 923 K, and 1073 K (500 °C, 650 °C, and 800 °C), respectively. The average crystallite size and particle sizes increased proportionally with the treatment temperature, in contrast to what has been found for some ceramics, in which as the heat treatment temperature is increased, the crystallite size increases, but the particle size stays constant.  相似文献   
42.
In order to protect the environment and regain value added to products, a process known as disassembly has come into the limelight. This process is to be applied to reuse abandoned goods and materials. Manufacturers are being forced to establish disassembly plants and to develop their products' designs so as to maintain the government's dictate to dispose off their products in an environmentally responsible manner. This research presents a cost-based heuristic analysis for a circuit board assembly. Various components of the product and their assembly relationships are represented by a Petri Net diagram. Firing the transitions of the disassembly Petri Net is integrated with cost-based indices to develop an effective disassembly strategy. The methodology discussed here simplifies the decisionmaking process involved in disassembly planning. A comprehensive disassembly process planning system is proposed here and is exemplified by a case study of circuit board assembly.  相似文献   
43.
This paper presents a methodology for reliability-based multiobjective optimization of large-scale engineering systems. This methodology is applied to the vehicle crashworthiness design optimization for side impact, considering both structural crashworthiness and occupant safety, with structural weight and front door velocity under side impact as objectives. Uncertainty quantification is performed using two first order reliability method-based techniques: approximate moment approach and reliability index approach. Genetic algorithm-based multiobjective optimization software GDOT, developed in-house, is used to come up with an optimal pareto front in all cases. The technique employed in this study treats multiple objective functions separately without combining them in any form. It shows that the vehicle weight can be reduced significantly from the baseline design and at the same time reduce the door velocity. The obtained pareto front brings out useful inferences about optimal design regions. A decision-making criterion is subsequently invoked to select the “best” subset of solutions from the obtained nondominated pareto optimal solutions. The reliability, thus computed, is also checked with Monte Carlo simulations. The optimal solution indicated by knee point on the optimal pareto front is verified with LS-DYNA simulation results.  相似文献   
44.
Neutron flux signal is composed of a steady or mean component resulting from the flux produced by power operation of the reactor and a very small fluctuating component called ‘noise’ component. Analysis of neutron noise from suitably located sensors is a proven technique to monitor the in-core components of light water reactors (LWRs). However, the use of neutron noise has been rare, if any, for heavy water reactors (HWRs) as it was generally felt that the unfavourable transfer function characteristics of the reactors would limit its applicability. To assess the applicability of technique in pressurised heavy water reactors (PHWRs), experiments were carried out using in-core and out-of-core neutron sensors in a research reactor. This paper discusses the measurement details and results of the experiment. This paper concludes that the neutron noise technique can be effectively utilised for diagnostics/characterisation of the in-core components of heavy water reactors.  相似文献   
45.
This study reports preparation of glass composition (54.50 wt.%) SiO2, (10.80 wt.%) B2O3, (14.20 wt.%) Na2O, (1.20 wt.%) K2O, (6.00 wt.%) CaO, (4.00 wt.%) Fe2O3 and (9.30 wt.%) TiO2 by melt quenching method using direct microwave heating and conventional resistive heating. Study of dielectric loss factor of the glass as function of temperature illustrated increasing loss factor above 370 ℃, 550 ℃, 650 ℃ and 900 ℃, indicating enhanced microwave absorption by the glass at above these temperatures. Chemical analysis results of both the glasses depicted more volatilization loss of volatile ingredients in conventional heating. The study of chemical durability was performed from leachate analysis describing less leaching of Na2O, K2O and other constituents from glass melted in microwave furnace. Glass transition temperatures (Tg) were found to be 576.3 ℃ and 569.5 ℃ for glass melted in conventional and microwave heating route, respectively. Laboratory experiment of glass melting utilizing microwave energy as an alternate heating source demonstrated 70%-75% electrical power saving.  相似文献   
46.
We consider a nonstatic, spin-polarized cylindrically symmetric perfect fluid distribution in the Einstein-Cartan theory and obtain the field equations. These field equations are solved using the Ray–Smalley energy-momentum tensor.  相似文献   
47.
A TiO2–nanoclay nanocomposite was used as a photocatalyst for the degradation of phenol in presence of acoustic cavitation. TiO2–nanoclay nanocomposite was synthesised in benzyl alcohol medium wherein TiO2 nanoparticles were formed between the nanoclay platelets. The synthesised product was characterised by using FTIR, XRD and TEM techniques. TEM image shows that TiO2–nanoclay nanocomposite particles were in the range of 30–40 nm. XRD gram confirms the formation of nanocomposite of TiO2 nanoclay. The effect of cavitation and TiO2–nanoclay nanocomposite photocatalyst on phenol removal was investigated. The effects of various parameters such as nanocomposite loading, initial concentration, etc., have been studied. On comparing the results obtained with that of nanocomposite without UV, it was found for an initial concentration of 500 mg/L of phenol, the TiO2–nanoclay nanocomposite exhibited higher percentage of pollutant removal (59%) and for nanoclay it was 47%. © 2011 Canadian Society for Chemical Engineering  相似文献   
48.
For 32/22 nm technology nodes and below, double patterning (DP) lithography has become the most promising interim solutions due to the delay in the deployment of next generation lithography (e.g., EUV). DP requires the partitioning of the layout patterns into two different masks, a procedure called layout decomposition. Layout decomposition is a key computational step that is necessary for double patterning technology. Existing works on layout decomposition are all single-threaded, which is not scalable in runtime and/or memory for large industrial layouts. This paper presents the first window-based parallel layout decomposition methods for improving both runtime and memory consumption. Experimental results are promising and show the presented parallel layout decomposition methods obtain upto 21× speedup in runtime and upto 7.5×reduction in peak memory consumption with acceptable solution quality.  相似文献   
49.
A new approach is proposed for determining the robust stability of discrete-time systems where each coefficient of the characteristic polynomial can take any value between specified lower and upper bounds. It is based on the use of Rouche's theorem in the theory of complex variables.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号