首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   100篇
电工技术   11篇
综合类   1篇
化学工业   380篇
金属工艺   20篇
机械仪表   16篇
建筑科学   35篇
矿业工程   7篇
能源动力   23篇
轻工业   141篇
水利工程   9篇
石油天然气   3篇
无线电   59篇
一般工业技术   158篇
冶金工业   73篇
原子能技术   5篇
自动化技术   137篇
  2024年   2篇
  2023年   18篇
  2022年   47篇
  2021年   61篇
  2020年   36篇
  2019年   25篇
  2018年   31篇
  2017年   31篇
  2016年   53篇
  2015年   36篇
  2014年   47篇
  2013年   69篇
  2012年   66篇
  2011年   96篇
  2010年   53篇
  2009年   65篇
  2008年   63篇
  2007年   61篇
  2006年   38篇
  2005年   30篇
  2004年   25篇
  2003年   23篇
  2002年   16篇
  2001年   14篇
  2000年   9篇
  1999年   11篇
  1998年   12篇
  1997年   9篇
  1996年   6篇
  1994年   7篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有1078条查询结果,搜索用时 15 毫秒
101.
The impulse response in frontside-illuminated mid-wave infrared HgCdTe electron avalanche photodiodes (APDs) has been measured with localized photoexcitation at varying positions in the depletion layer. Gain measurements have shown an exponential gain, with a maximum value of M = 5000 for the diffusion current at a reverse bias of V b = 12 V. When the light was injected in the depletion layer, the gain was reduced as the injection approached the N+ edge of the junction. The impulse response was limited by the diode series resistance–capacitance product, RC, due to the large capacitance of the diode metallization. Hence, the fall time is given by the RC constant, estimated as RC = 270 ps, and the rise time is due to the charging of the diode capacitance via the transit and multiplication of carriers in the depletion layer. The latter varies between t 10–90 = 20 ps (at intermediate gains M < 500) and t 10–90 = 70 ps (at M = 3500). The corresponding RC-limited bandwidth is BW = 600 MHz, which yields a new absolute record in gain–bandwidth product of GBW = 2.1 THz. The increase in rise time at high gains indicates the existence of a limit in the transit-time-limited gain–bandwidth product, GBW = 19 THz. The impulse response was modeled using a one-dimensional deterministic model, which allowed a quantitative analysis of the data in terms of the average velocity of electrons and holes. The fitting of the data yielded a saturation of the electron and hole velocity of v e = 2.3 × 107 cm/s and v h = 1.0 × 107 cm/s at electric fields E > 1.5 kV/cm. The increase in rise time at high bias is consistent with the results of Monte Carlo simulations and can be partly explained by a reduction of the electron saturation velocity due to frequent impact ionization. Finally, the model was used to predict the bandwidth in diodes with shorter RC = 5 ps, giving BW = 16 GHz and BW = 21 GHz for x j = 4 μm and x j = 2 μm, respectively, for a gain of M = 100.  相似文献   
102.
The modeling of carbon nanotube production by the CCVD process in a continuous rotary reactor with mobile bed was performed according to a rigorous chemical reaction engineering approach. The geometric, hydrodynamic, physical and physicochemical factors governing the process were analyzed in order to establish the reactor equations. While the study of the hydrodynamic factor suggests a co‐current plug‐flow approximation, the physical factor mainly deals with the phenomena of transport and the transfer of mass, which can be neglected. Concerning the physicochemical factor, the modeling is based on knowledge of the expression of the initial reaction rate, and takes into account catalytic deactivation as a function of time, according to a sigmoid decreasing law. The reactor modeling allows obtaining the evolution of partial pressure, carbon nanotube production and catalytic deactivation along the reactor for given initial operating conditions. The comparison between experimental and calculated production highlights a very good fit of data. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
103.
Semi-synthetic triterpenoids, holding an amino substituted seven-membered A-ring (azepano-ring), which could be synthesized from triterpenic oximes through a Beckmann type rearrangement followed by a reduction of lactame fragment, are considered to be novel promising agents exhibiting anti-microbial, alpha-glucosidase, and butyrylcholinesterase inhibitory activities. In this study, in an attempt to develop new antitumor candidates, a series of A-ring azepano- and 3-amino-3,4-seco-derivatives of betulin, oleanolic, ursolic, and glycyrrhetinic acids were evaluated for their cytotoxic activity against five human cancer cell lines and non-malignant mouse fibroblasts by means of a colorimetric sulforhodamine assay. Azepanoallobetulinic acid amide derivative 11 was the most cytotoxic compound of this series but showed little selectivity between the different human tumor cell lines. Flow cytometry experiments showed compound 11 to act mainly by apoptosis (44.3%) and late apoptosis (21.4%). The compounds were further screened at the National Cancer Institute towards a panel of 60 cancer cell lines. It was found that compounds 3, 4, 7, 8, 9, 11, 15, 16, 19, and 20 showed growth inhibitory (GI50) against the most sensitive cell lines at submicromolar concentrations (0.20–0.94 μM), and their cytotoxic activity (LC50) was also high (1–6 μM). Derivatives 3, 8, 11, 15, and 16 demonstrated a certain selectivity profile at GI50 level from 5.16 to 9.56 towards K-562, CCRF-CEM, HL-60(TB), and RPMI-8226 (Leukemia), HT29 (Colon cancer), and OVCAR-4 (Ovarian cancer) cell lines. Selectivity indexes of azepanoerythrodiol 3 at TGI level ranged from 5.93 (CNS cancer cell lines SF-539, SNB-19 and SNB-75) to 14.89 for HCT-116 (colon cancer) with SI 9.56 at GI50 level for the leukemia cell line K-562. The present study highlighted the importance of A-azepano-ring in the triterpenic core for the development of novel antitumor agents, and a future aim to increase the selectivity profile will thus lie in the area of modifications of azepano-triterpenic acids at their carboxyl group.  相似文献   
104.
Magnetic skyrmions are particle‐like deformations in a magnetic texture. They have great potential as information carriers in spintronic devices because of their interesting topological properties and favorable motion under spin currents. A new method of nucleating skyrmions at nanoscale defect sites, created in a controlled manner with focused ion beam irradiation, in polycrystalline magnetic multilayer samples with an interfacial Dzyaloshinskii–Moriya interaction, is reported. This new method has three notable advantages: 1) localization of nucleation; 2) stability over a larger range of external field strengths, including stability at zero field; and 3) existence of skyrmions in material systems where, prior to defect fabrication, skyrmions were not previously obtained by field cycling. Additionally, it is observed that the size of defect nucleated skyrmions is uninfluenced by the defect itself—provided that the artificial defects are controlled to be smaller than the inherent skyrmion size. All of these characteristics are expected to be useful toward the goal of realizing a skyrmion‐based spintronic device. This phenomenon is studied with a range of transmission electron microscopy techniques to probe quantitatively the magnetic behavior at the defects with applied field and correlate this with the structural impact of the defects.  相似文献   
105.
106.
In recent years, a role for epigenetic modifications in the pathophysiology of disease has received significant attention. Many studies are now beginning to explore the gene–environment interactions, which may mediate early-life exposure to risk factors, such as nutritional deficiencies and later development of behavioral problems in children and adults. In this paper, we review the current literature on the role of epigenetics in the development of psychopathology, with a specific focus on the potential for epigenetic modifications to link nutrition and brain development. We propose a conceptual framework whereby epigenetic modifications (e.g., DNA methylation) mediate the link between micro- and macro-nutrient deficiency early in life and brain dysfunction (e.g., structural aberration, neurotransmitter perturbation), which has been linked to development of behavior problems later on in life.  相似文献   
107.
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/β catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.  相似文献   
108.
109.
Magnetic Resonance Materials in Physics, Biology and Medicine - To study inter-individual differences of the relation between diaphragm and heart motion, the objective of the present study was to...  相似文献   
110.
Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high-temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure-assisted sintering (PAS) are a possible future way for a cost-effective mass-production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape-cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab-direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry-pressed, pressureless-sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry-pressed reference (30 MPa) from the same powder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号