首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学工业   2篇
金属工艺   10篇
能源动力   1篇
轻工业   2篇
一般工业技术   8篇
  2021年   3篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
排序方式: 共有23条查询结果,搜索用时 4 毫秒
21.
Aging-related multilayer spectral instabilities can pose severe performance limiting constraints to optical multilayer devices. In this study such instabilities of some periodic Gd2O3/SiO2 optical multilayer systems have been explored using scanning probe force–distance microscopy and spectrophotometric techniques. In the present case, a strong correlation between the spectral instabilities and the viscoelastic properties of the associated thin film layers has been distinctly noticed. From the experimental analysis it was quite evident that the spectral instability, which starts during the nucleation and growth stage in thin films, continues to persist at a much longer time scale following aging processes. In this study it is shown that the elastic properties of the constituent thin films, the layer design and the bilayer thickness have established a strong interrelation which ultimately contributes to the multilayer instabilities. These spectral instabilities also have strong interconnections with the morphological and viscoelastic changes in such multilayers. Other multilayer parameters like the total number of layers, the layer structure, the microroughness evolutions, related stiffness factors and the adhesion properties of the periodic layer systems contribute substantially to this instability process.  相似文献   
22.
23.
Salt stress is one of the major significant restrictions that hamper plant development and agriculture ecosystems worldwide. Novel climate-adapted cultivars and stress tolerance-enhancing molecules are increasingly appreciated to mitigate the detrimental impacts of adverse stressful conditions. Sorghum is a valuable source of food and a potential model for exploring and understanding salt stress dynamics in cereals and for gaining a better understanding of their physiological pathways. Herein, we evaluate the antioxidant scavengers, photosynthetic regulation, and molecular mechanism of ion exclusion transporters in sorghum genotypes under saline conditions. A pot experiment was conducted in two sorghum genotypes viz. SSG 59-3 and PC-5 in a climate-controlled greenhouse under different salt concentrations (60, 80, 100, and 120 mM NaCl). Salinity drastically affected the photosynthetic machinery by reducing the accumulation of chlorophyll pigments and carotenoids. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, GST, DHAR, MDHAR, GSH, ASC, proline, GB), as well as protecting cell membrane integrity (MDA, electrolyte leakage). Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via the concomitant upregulation of SbSOS1, SbSOS2, and SbNHX-2 and SbV-Ppase-II ion transporter genes in sorghum genotypes. Overall, these results suggest that Na+ ions were retained and detoxified, and less stress impact was observed in mature and younger leaves. Based on the above, we deciphered that SSG 59-3 performed better by retaining higher plant water status, photosynthetic assimilates and antioxidant potential, and the upregulation of ion transporter genes and may be utilized in the development of resistant sorghum lines in saline regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号