首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19447篇
  免费   838篇
  国内免费   143篇
电工技术   325篇
综合类   32篇
化学工业   4279篇
金属工艺   603篇
机械仪表   636篇
建筑科学   374篇
矿业工程   47篇
能源动力   1379篇
轻工业   1195篇
水利工程   151篇
石油天然气   84篇
武器工业   1篇
无线电   2415篇
一般工业技术   4418篇
冶金工业   1483篇
原子能技术   172篇
自动化技术   2834篇
  2024年   104篇
  2023年   424篇
  2022年   1006篇
  2021年   1174篇
  2020年   919篇
  2019年   943篇
  2018年   1235篇
  2017年   963篇
  2016年   937篇
  2015年   611篇
  2014年   851篇
  2013年   1524篇
  2012年   903篇
  2011年   1086篇
  2010年   868篇
  2009年   821篇
  2008年   721篇
  2007年   585篇
  2006年   481篇
  2005年   368篇
  2004年   283篇
  2003年   251篇
  2002年   194篇
  2001年   186篇
  2000年   172篇
  1999年   172篇
  1998年   302篇
  1997年   256篇
  1996年   229篇
  1995年   173篇
  1994年   162篇
  1993年   163篇
  1992年   109篇
  1991年   137篇
  1990年   103篇
  1989年   99篇
  1988年   82篇
  1987年   93篇
  1986年   81篇
  1985年   93篇
  1984年   75篇
  1983年   74篇
  1982年   64篇
  1981年   73篇
  1980年   55篇
  1979年   33篇
  1978年   27篇
  1977年   31篇
  1976年   38篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
During manufacturing of a component, cutting, turning, grinding, and milling operations are inevitable and these operations induce surface residual stresses. In this study, it is shown that, depending on the process employed for cutting, residual stresses generated at the cut surfaces can vary widely and they can, in turn, make the cut surfaces of austenitic stainless steel (SS) prone to stress corrosion cracking (SCC). An austenitic SS 304L plate was cut using three different procesess: bandsaw cutting, cutting using the cut-off wheel, and shearing. Surface residual stress measurement using the X-ray diffraction (XRD) technique is carried out close to the cutting edges and on the cross-section. SCC susceptibility studies were carried out as per ASTM G36 in 45% boiling magnesium chloride solution. Optical microscopic examination showed the presence of cracks, and confocal microscopy was used to measure the depth of cracks. The study confirmed that high tensile residual stresses present in the cut surfaces produced by cut-off wheel and shear cutting make the surfaces susceptible to SCC while the surfaces produced by bandsaw cutting are resistant to SCC. Hence, it is shown that there is a definite risk of SCC for product forms of austenitic SS with cut surfaces produced using cutting processes that generate high tensile residual stresses stored for a long period of time in a susceptible environment.  相似文献   
992.
CdSe/ZnSe heterostructure multilayer thin films were prepared with different sublayer thicknesses of CdSe using the physical vapor deposition method. X-ray diffraction studies were used to calculate the average size of the particles and confirmed the (1 1 1) plane of ZnSe. Due to the stacking of alternate CdSe and ZnSe layers, stress was created in the multilayer systems. This results in quantum size effects. Experimentally measured energy values from () vs. (αhν)2 dependence confirm the presence of spin–orbit split in the valence band of CdSe. The calculated band gap energies are greater than that of bulk CdSe. Crystallite sizes (12–4 nm) were calculated based on the predictions of the effective mass approximation model (i.e. Brus model). Results show that the diameters of crystallites are smaller than the Bohr exciton diameter (11.2 nm) of CdSe. Upon particle size decrease, the photoluminescence peak is shifted from the green region to the blue region. Analysis shows that the sublayer thickness of CdSe material changes the properties of CdSe/ZnSe multilayer systems.  相似文献   
993.
We investigate the lamellar growth of pearlite at the expense of austenite during the eutectoid transformation in steel. To begin with, we extend the Jackson–Hunt-type calculation (previously used to analyze eutectic transformation) to eutectoid transformation by accounting for diffusion in all the phases. Our principal finding is that the growth rates in the presence of diffusion in all the phases are different compared to the case when diffusion in growing phases is absent. The difference in the dynamics is described by a factor ’ρ’ which comprises the ratio of the diffusivities of the bulk and the growing phases, along with the ratios of the slopes of the phase coexistence lines. Thereafter, we perform phase-field simulations, the results of which are in agreement with analytical predictions. The phase-field simulations also reveal that diffusion in austenite as well as ferrite leads to the formation of tapered cementite along with an overall increase in the transformation kinetics as compared to diffusion in austenite (only). Finally, it is worth noting that the aim of present work is not to consider the pearlitic transformation in totality; rather it is to isolate and thereby investigate the influence of diffusivity in the growing phases on the front velocity.  相似文献   
994.
A three-dimensional elastoplastic phase-field model is developed to study the microstructure evolution during strain-induced martensitic transformation in stainless steels under different stress states. The model also incorporates linear isotropic strain hardening. The input simulation data is acquired from different sources, such as CALPHAD, ab initio calculations and experimental measurements. The results indicate that certain stress states, namely uniaxial tensile, biaxial compressive and shear strain loadings, lead to single variant formation in the entire grain, whereas others, such as uniaxial compressive, biaxial tensile and triaxial strain loadings, lead to multivariant microstructure formation. The effects of stress states, strain rate as well as temperature on the mechanical behavior of steels are also studied. The material exhibits different yield stresses and hardening behavior under different stress states. The equivalent stress is higher at low strain rate, whereas a higher elongation is obtained at high strain rate. The deformation temperature mainly affects the hardening behavior of the material as well as the transformation, i.e. martensite volume fraction decreases with increasing temperature. Some of the typical characteristics of strain-induced martensite, such as the formation of thin elongated martensite laths, shear band formation and nucleation of martensite in highly plasticized areas, as well as at shear band intersections, are also observed.  相似文献   
995.
Pure nickel sheets are subjected to severe plastic deformation by constrained groove pressing technique at room temperature thereby imparting an effective plastic strain of 3.48. The evolution of mechanical behaviour with increasing number of passes revealed intensive increase in strength properties after first pass; however marginal increase is observed subsequently. Gain in ductility which is attributed to dislocation recovery is observed after third pass along with marginal drop in strength. Microstructural evolution during groove pressing of sheets is characterized by X-ray diffraction profile analysis using Williamson–Hall method. Besides the observation of strong shear texture in constrained groove pressed sheets, improvement in strain isotropy with increased straining is revealed from Williamson–Hall plots. The sub-grain/cell size estimated by analysing the diffraction profile of deformed sheets is found to be ~1390 nm after processing up to three passes. Low grain refinement efficiency observed in this process compared to other severe plastic deformation techniques at similar strain conditions is explained by the deformation characteristics and loading behaviour experienced by the sheets during constrained groove pressing.  相似文献   
996.
Al-Zn-Mg/SiCP composites processed by a liquid metal processing (stir casting) technique have been microstructurally characterised in the as-cast and extruded conditions. Uniform distribution of SiCP is observed with few defects, such as particle clusters, which are due to partial wetting and associated gas porosity. The constituent particles are associated with SiCP although their composition remains unaffected compared with the control alloy. Hot extrusion of the composite using a shear type die showed banding of particles in the extruded direction with 9 vol. % composite. Such defects however, are not predominant in 18% SiCP extruded composites. The presence of Mg2Si is detected at the particle matrix interface as well as in the matrix.  相似文献   
997.
The characteristics of Ti6Al4V alloy subjected to thermal oxidation in air atmosphere at 650 °C for 48 h and its corrosion behavior in 0.1 and 4 M HCl and HNO3 medium are addressed. When compared to the naturally formed oxide layer (~4–6 nm), a relatively thicker oxide scale (~7 µm) is formed throughout the surface of Ti6Al4V alloy after thermal oxidation. XRD pattern disclose the formation of the rutile and oxygen‐diffused titanium as the predominant phases. A significant improvement in the hardness (from 324 ± 8 to 985 ± 40 HV0.25) is observed due to the formation of hard oxide layer on the surface followed by the presence of an oxygen diffusion zone beneath it. Electrochemical studies reveal that the thermally oxidized Ti6Al4V alloy offers a better corrosion resistance than its untreated counterpart in both HCl and HNO3 medium. The uniform surface coverage, compactness and thickness of the oxide layer provide an effective barrier towards corrosion of the Ti6Al4V alloy. The study concludes that thermal oxidation is an effective approach to engineer the surface of Ti6Al4V alloy to increase its corrosion resistance in HCl and HNO3 medium.  相似文献   
998.
Electrochemical (EC) oxidation of distillery wastewater with low (BOD5/COD) ratio was investigated using aluminum plates as electrodes. The effects of operating parameters such as pH, electrolysis duration, and current density on COD removal were studied. At a current density of 0.03 A cm−2 and at pH 3, the COD removal was found to be 72.3%. The BOD5/COD ratio increased from 0.15 to 0.68 for an optimum of 120-min electrolysis duration indicating improvement of biodegradability of wastewater. The maximum anodic efficiency observed was 21.58 kg COD h−1 A−1 m−2, and the minimum energy consumption observed was 0.084 kWh kg−1 COD. The kinetic study results revealed that reaction rate (k) decreased from 0.011 to 0.0063 min−1 with increase in pH from 3 to 9 while the k value increased from 0.0035 to 0.0102 min−1 with increase in current density from 0.01 to 0.03 A cm−2. This study showed that the COD reduction is more influenced by the current density. The linear and the nonlinear regression models reveal that the COD reduction is influenced by the applied current density.  相似文献   
999.
Garden cress (Lepidium sativum L.) is an edible, underutilised herb, grown mainly for its seeds in India. Physicochemical properties, minor components (unsaponifiable matter, tocopherols, carotenoids), fatty acid composition and storage stability of garden cress seed oil (GCO) were studied. Cold press, solvent and supercritical CO2 extraction methods were employed to extract the oil. The total oil content of garden cress (GC) seeds was 21.54, 18.15 and 12.60% respectively by solvent, supercritical CO2 and cold press methods. The physical properties of GCO extracted by the above methods were similar in terms of refractive index, specific gravity and viscosity. However, cold pressed oil showed low PV and FFA compared to the oil extracted by other methods. α-Linolenic acid (34%) was the major fatty acid in GCO followed by oleic (22%), linoleic (11.8%), eicosanoic (12%), palmitic (10.1%) erucic (4.4%), arachidic (3.4%) and stearic acids (2.9%). Oleic acid (39.9%) and α-linolenic acid (42.1%) were the predominant fatty acids at the sn-2 position. The total tocopherol and carotenoid content of GCO was 327.42 and 1.0 μmol/100 g oil, respectively. The oil was stable up to 4 months at 4 °C. Tocopherol and BHT offered the least protection, while ascorbyl palmitate (200 ppm) offered the maximum protection to the oil, when subjected to the accelerated oxidative stability test. Thus GCO can be considered as a fairly stable oil with a high content of α-linolenic acid.  相似文献   
1000.
The mixing torque behavior of ter blends of isotactic-polypropylene (iPP) with ethylene-propylene diene rubber (EPDM)/Nitrile rubber (NBR) was studied with the help of Rheometer using resole type phenolic resin as a cross-linking agents. Systematic changes with varying blend composition were observed in stress-strain behavior in the yield region viz., width of yield peak, work of yield, yield stress and yield strain. Analysis of yield stress data was made on the basis of various mathematical expressions of first power and two-thirds power laws of blend composition dependence and the porosity model. It led to consistent result from the expressions about the variation of stress concentration effect in both uncross-linked and cross-linked blend systems. With the aid of scanning electron microscopy (SEM) shapes and sizes of dispersed elastomer phase (EPDM / NBR) domains at varying blend compositions were studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号