首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1998篇
  免费   97篇
  国内免费   14篇
电工技术   25篇
综合类   4篇
化学工业   420篇
金属工艺   87篇
机械仪表   81篇
建筑科学   45篇
矿业工程   2篇
能源动力   128篇
轻工业   191篇
水利工程   25篇
石油天然气   9篇
无线电   259篇
一般工业技术   382篇
冶金工业   133篇
原子能技术   6篇
自动化技术   312篇
  2024年   7篇
  2023年   44篇
  2022年   93篇
  2021年   150篇
  2020年   108篇
  2019年   94篇
  2018年   134篇
  2017年   113篇
  2016年   103篇
  2015年   61篇
  2014年   95篇
  2013年   159篇
  2012年   100篇
  2011年   117篇
  2010年   82篇
  2009年   79篇
  2008年   63篇
  2007年   62篇
  2006年   50篇
  2005年   44篇
  2004年   20篇
  2003年   22篇
  2002年   20篇
  2001年   20篇
  2000年   17篇
  1999年   12篇
  1998年   41篇
  1997年   23篇
  1996年   14篇
  1995年   20篇
  1994年   18篇
  1993年   9篇
  1992年   7篇
  1991年   6篇
  1990年   8篇
  1989年   14篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1984年   11篇
  1983年   4篇
  1982年   5篇
  1981年   9篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1974年   2篇
排序方式: 共有2109条查询结果,搜索用时 0 毫秒
91.
Biopolymers derived from renewable resources are an emerging class of advanced materials that offer many useful properties for a wide range of food and nonfood applications. Current state of the art in research and development of renewable polymers as adhesives, gums, binders, and emulsions is the subject of this review. Much of the focus will be on major biopolymers such as starch, proteins, lignin, oils, and their derivatives found in both natural and modified forms, but other biopolymers of promising commercial interest will also be included where warranted. Polymers produced in nature are remarkably diverse in their chemistry, thermomechanical properties, rheology, plasticity, and chemical reactivity. In particular, their capacity to undergo a wide array of chemical modifications yields materials with tailored properties suitable for use as adhesives, gums, coatings, emulsions, and binders. Many such materials are now widely used in commercial products like building materials, lubricants, sealants, coatings, bonding aids, pharmaceuticals, paper, glues, flocculants, processed and frozen foods, as well as tissue engineering and bone repair products. This review provides a general overview of biobased polymers highlighting their source, availability, properties, and usage in industrial products along with the future prospects, challenges, and opportunities they offer.  相似文献   
92.
Among carbon capture and storage (CCS), the post-combustion capture of carbon dioxide (CO2) by means of chemical absorption is actually the most developed process. Steady state process simulation turned out as a powerful tool for the design of such CO2 scrubbers. Besides steady state modeling, transient process simulations deliver valuable information on the dynamic behavior of the system. Dynamic interactions of the power plant with the CO2 separation plant can be described by such models. Within this work a dynamic process simulation model of the absorption unit of a CO2 separation plant was developed. For describing the chemical absorption of CO2 into an aqueous monoethanolamine solution a rate based approach was used. All models were developed within the Aspen Custom Modeler® simulation environment. Thermo physical properties as well as transport properties were taken from the electrolyte non-random-two-liquid model provided by the Aspen Properties® database. Within this work two simulation cases are presented. In a first simulation the inlet temperature of the flue gas and the lean solvent into the absorber column was changed. The results were validated by using experimental data from the CO2SEPPL test rig located at the Dürnrohr power station. In a second simulation the flue gas flow to the separation plant was increased. Due to the unavailability of experimental data a validation of the results from the second simulation could not be achieved.  相似文献   
93.
94.
Recently, new strains of Fasciola demonstrated drug resistance, which increased the need for new drugs or improvement of the present drugs. Nanotechnology is expected to open some new opportunities to fight and prevent diseases using an atomic scale tailoring of materials. The ability to uncover the structure and function of biosystems at the nanoscale, stimulates research leading to improvement in biology, biotechnology, medicine and healthcare. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Therefore, this work aimed to isolate fungal strains from Taif soil samples, which have the ability to synthesize silver nanoparticles. The fungus Trichoderma harzianum, when challenged with silver nitrate solution, accumulated silver nanoparticles (AgNBs) on the surface of its cell wall in 72 h. These nanoparticles, dislodged by ultrasonication, showed an absorption peak at 420 nm in a UV-visible spectrum, corresponding to the plasmon resonance of silver nanoparticles. The transmission electron micrographs of dislodged nanoparticles in aqueous solution showed the production of reasonably monodisperse silver nanoparticles (average particle size: 4.66 nm) by the fungus. The percentage of non hatching eggs treated with the Triclabendazole drug was 69.67%, while this percentage increased to 89.67% in combination with drug and AgNPs.  相似文献   
95.
This study focuses on methylol functional benzoxazines as precursors to build a network structure utilizing both benzoxazine and resole chemistry. The first part is a review of systems that contain methylol groups which play a role on their crosslinking formation. The polymerization mechanism and properties of resoles will be highlighted as the most abundant polymers that are characterized by polymerization through condensation reaction of methylol group. In the second part, the effect of incorporating methylol group into benzoxazine monomers is studied. Differential scanning calorimetry (DSC) is used to study the effect of methylol group on the rate of polymerization. Kissinger and Ozawa methods using non-isothermal DSC at different heating rates show that methylol monomer exhibits lower average activation energy compared to the un-functionalized monomer. The effect of adding catalysts into the monomers is also studied. p-Toluene sulfonic acid (PTSA) is found to be more efficient than 1-methyl-imidazole (IMD) and lithium iodide (LiI) in the case of methylol monomer due to its ability of accelerating both the methylol condensation and ring-opening polymerization. Additionally, thermal behavior of the monomers is studied using thermogravimetric analysis (TGA).  相似文献   
96.
ZnO nanorods were synthesized using a low-cost sol-gel spin coating technique. The synthesized nanorods were consisted of hexagonal phase having c-axis orientation. SEM images reflected perpendicular ZnO nanorods forming bridging network in some areas. The impact of different hydrogen concentrations on the Pd-sensitized ZnO nanorods was investigated using an impedance spectroscopy (IS). The grain boundary resistance (Rgb) significantly contributed to the sensing properties of hydrogen gas. The boundary resistance was decreased from 11.95 to 3.765 kΩ when the hydrogen concentration was increased from 40 to 360 ppm. IS gain curve showed a gain of 6.5 for 360 ppm of hydrogen at room temperature. Nyquist plot showed reduction in real part of impedance at low frequencies on exposure to different concentrations of hydrogen. Circuit equivalency was investigated by placing capacitors and resistors to identify the conduction mechanism according to complex impedance Nyquist plot. Variations in nanorod resistance and capacitance in response to the introduction of various concentrations of hydrogen gas were obtained from the alternating current impedance spectra.  相似文献   
97.
The catalytic activity and life of the NiMoS supported on alumina–USY zeolite (physical mixture of alumina and USY (NMAZ), USY zeolite coated with alumina (NMACZ-2)) were compared in the hydrocracking of 1-methyl naphthalene by a single run at the several reaction temperatures between 360 and 400 °C as well as repeated runs at 360 °C. The relative activity of NMAZ is slightly higher after 1 h at all reaction temperatures, but was lower after 2 h at reaction temperatures above 380 °C. The preference of NMACZ-2 became distinct and definite by further increasing the reaction time at all reaction temperatures. Too long reaction time, particularly at higher reaction temperature, decreased the yield of (alkyl)benzenes, indicating the significant progress of the successive reactions. Thus, the highest yield of alkyl(benzenes) of about 97% was obtained over NMACZ-2 after 4 h at 380–390 °C. This was much less than the yield of about 82% obtained over NMAZ after 4 h at 370 °C. Ten repeated runs at 360 °C for 6 h resulted in marked decrease of yield over NMAZ from 73% to 64%, while the decrease in yield over NMACZ-2 was only from about 80% to 78%. The decrease of catalytic activity appears to reflect the coke formation on the USY which occurs on the naked acidic site of the substrate, which are rather isolated from the NiMoS on alumina. In contrast, alumina-coated support keeps USY underneath the alumina, which carries NiMoS and acidic sites on the same surface. The acidity of surface alumina is moderated by the underneath USY. The adequate acidity of the neighboring NiMoS and high hydrogenation activity provide a good balance resulting in an excellent catalytic activity and life of NiMoS supported on alumina-coated USY zeolite.  相似文献   
98.
The feasibility of the removal of Ag+ ions in a model solution and a sample of rinse water provided from an industrial plating plantwas investigated in a batch electrodialysis system. The experiments were carried out using two different types of ion-exchange membranes. The effects of applied potential, pH value and initial silver concentration on the duration of electrodialysis and energy consumption were examined. Full removal of Ag+ ions was achieved from model solutions and the sample of rinse water. The most convenient applied voltage and energy consumption values to remove silver ions are reported. These results will be useful for designing and operating different capacities of electrodialysis plants for recovering Ag+ ions.  相似文献   
99.
Effects of applying a packing pressure on void content, void morphology, and void spatial distribution were investigated for resin transfer molding (RTM) E‐glass/epoxy composites. Packing pressures of zero and 570 kPa were respectively applied to center‐gated composites containing 17.5% randomly oriented, E‐glass fiber preform. Radial samples of these disk‐shaped composites were utilized to evaluate voidage via microscopic image analysis. Two adjacent surfaces were cut from each molded disk in order to evaluate void presence from both through‐the‐thickness and planar views. The packed composite was found to contain almost 92% less void content than the unpacked composite. While void fractions of 2.2 and 2.6% were measured, respectively, from the through‐the‐thickness and planar surfaces of the unpacked composite, only 0.2% void content was observed in the packed composite from both surfaces. Digital images obtained from through‐the‐thickness surface showed that average void size dropped from 59.3 μm in the unpacked composite to 31.7 μm in the packed composite. A similar reduction in average void size from 66.7 to 41.1 μm was observed from the planar surfaces. Circular voids were found to experience higher removal rates at 99%, followed by cylindrical and elliptical voids at 83 and 81%, respectively; while irregular voids show slightly lower void removal rates at 67%. Void proximity to fiber bundles was also observed to affect void reduction as voids located inside fiber tows experience lower void reduction rates. Along the radial direction of the molded disks, removal of voids with different proximities to fibers seems to depend on their arrangement at the end of the filling stage. These findings are believed to ascertain packing as an effective void removal method for RTM and similar liquid composite molding processes. POLYM. COMPOS., 26:614–627, 2005. © 2005 Society of Plastics Engineers  相似文献   
100.
Polyamide comprises one of the major classes of polymers. Layered silicates (nanofiller) may enhance properties of polyamide-based hybrids even at very low content. Aliphatic polyamides (nylons) have often been chosen for commercial applications because of excellent physical and chemical properties. Aromatic polyamides (aramids) and aliphatic-aromatic polyamides have been predominantly useful as high-performance materials due to stiffness, low density, and low cost. Recently polyamide blends have become an important route to high-performance materials. Binary blends of polyamide/polypropylene, polyamide/polystyrene, polyamide/polymethyl methacrylate, polyamide/polyurethane, and others have been reported for nanocomposite formation with organoclay. However, ternary blend nanocomposite with nanoclays (PA6/mSEBS, PA6/EPDM-g-MA/H-HDPE) is rarely explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号