Nano-hydroxyapatite (NHAp) with a novel rod shape was synthesized from an economical and easily accessible Labeo rohita fish scale bio-waste by facile and straightforward alkaline heat treatment method. The purity, functionality, morphology, and surface area of the green synthesized NHAp powder were well-characterized via X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET). The TEM and BET results indicate that the apatite is prepared as a rod-like particle and highly porous with high surface area (112.36 m2 g−1). The NHAp powder was used for the adsorptive removal of cationic dye-methylene blue (MB) from the aqueous samples. Batch experiments were performed to evaluate the mechanism of adsorption and kinetic models. The NHAp achieved an enhanced adsorption efficiency (666.67 mg g−1) for the adsorption process. The obtained results perfectly obeyed the pseudo-second-order model, and the Langmuir isotherm exhibited an excellent relationship with the experimental data. Furthermore, thermodynamic studies reveal that the adsorption process was exothermic and spontaneous. Thus, the results proved that Labeo rohita fish scale bio-waste derived NHAp can be inventively utilized as a cost-effective and eco-friendly adsorbent for wastewater treatment. 相似文献
Toxicity of airborne particulate matter (PM) is difficult to assess because PM composition is complex and variable due to source contribution and atmospheric transformation. In this study, we used an in vitro toxicoproteomic approach to identify the toxicity mechanisms associated with different subfractions of Ottawa urban dust (EHC-93).
Methods
A549 human lung epithelial cells were exposed to 0, 60, 140 and 200 μg/cm2 doses of EHC-93 (total), its insoluble and soluble fractions for 24 h. Multiple cytotoxicity assays and proteomic analyses were used to assess particle toxicity in the exposed cells.
Results
The cytotoxicity data based on cellular ATP, BrdU incorporation and LDH leakage indicated that the insoluble, but not the soluble, fraction is responsible for the toxicity of EHC-93 in A549 cells. Two-dimensional gel electrophoresis results revealed that the expressions of 206 protein spots were significantly altered after particle exposures, where 154 were identified by MALDI-TOF-TOF-MS/MS. The results from cytotoxicity assays and proteomic analyses converged to a similar finding that the effects of the total and insoluble fraction may be alike, but their effects were distinguishable, and their effects were significantly different from the soluble fraction. Furthermore, the toxic potency of EHC-93 total is not equal to the sum of its insoluble and soluble fractions, implying inter-component interactions between insoluble and soluble materials resulting in synergistic or antagonistic cytotoxic effects. Pathway analysis based on the low toxicity dose (60 μg/cm2) indicated that the two subfractions can alter the expression of those proteins involved in pathways including cell death, cell proliferation and inflammatory response in a distinguishable manner. For example, the insoluble and soluble fractions differentially affected the secretion of pro-inflammatory cytokines such as MCP-1 and IL-8 and distinctly altered the expression of those proteins (e.g., TREM1, PDIA3 and ENO1) involved in an inflammatory response pathway in A549 cells.
Conclusions
This study demonstrated the impact of different fractions of urban air particles constituted of various chemical species on different mechanistic pathways and thus on cytotoxicity effects. In vitro toxicoproteomics can be a valuable tool in mapping these differences in air pollutant exposure-related toxicity mechanisms.
Zinc‐complexing ligands are prospective anti‐biofilm agents because of the pivotal role of zinc in the formation of Staphylococcus aureus biofilm. Accordingly, the potential of a thiosemicarbazone (compound C1) and a benzothiazole‐based ligand (compound C4) in the prevention of S. aureus biofilm formation was assessed. Compound C1 displayed a bimodal activity, hindering biofilm formation only at low concentrations and promoting biofilm growth at higher concentrations. In the case of C4, a dose‐dependent inhibition of S. aureus biofilm growth was observed. Atomic force microscopy analysis suggested that at higher concentrations C1 formed globular aggregates, which perhaps formed a substratum that favored adhesion of cells and biofilm formation. In the case of C4, zinc supplementation experiments validated zinc complexation as a plausible mechanism of inhibition of S. aureus biofilm. Interestingly, C4 was nontoxic to cultured HeLa cells and thus has promise as a therapeutic anti‐biofilm agent. The essential understanding of the structure‐driven implications of zinc‐complexing ligands acquired in this study might assist future screening regimes for identification of potent anti‐biofilm agents. 相似文献
Dielectric study over a broadband was carried out from 10 to 70 K on ceramic Gd1?xYxMnO3 (x=0.2, 0.3 and 0.4). For all the compositions, a prominent sharp peak about ~18 K was observed in the temperature dependence of both ε′(T) and ε″(T) at all frequencies, indicating a long‐range ferroelectric (FE) transition. Using Cole‐Cole fit to the permittivity data, the relaxation time τ and the dielectric strength ?ε were estimated. Temperature variation of τ(T) in the Arrhenius representation is found to be nonlinear (non‐Debyean relaxation), with increasing barrier‐activation energy over successive temperature‐windows. Interestingly, for all the compositions, we witness a jump in τ(T) about the ferroelectric transition temperature, concurred by a broad‐maximum in ?ε(T),signifying the critical slow down of relaxations near long‐range FE‐correlations. 相似文献
Structural study of the Ti(Oi Pr)4/F8BINOL interaction demonstrates that F8BINOL, an isostere of BINOL with significant electronic perturbation, leads to novel complexes with cubic Ti4O4 cores and bridging, rather than commonly observed chelating, arrangements of the diolate ligands. 相似文献
The Reversible data hiding (RDH) approach can retrieve the original image from the marked image without any distortion. RDH in encrypted images is an approach that hides extra information into the ciphertext using a skill of recovering the actual data losslessly. To guarantee reversibility for addressing the information redundancy drawback, the cover image pixels are copied into two images. This paper presents a high capacity RDH scheme in encrypted images using fuzzy-based encryption. Initially, the texture classification is processed by a convolutional neural network (CNN) to classify the dense and transparent region. It automatically identifies the significant features without any individual supervision. Then, the plain text encryption is activated by the fuzzy group teaching with infinite elliptic curve (FGTIE) method. To overcome the demerit of FCM, the GTA is hybrid with FCM approach and the encryption is processed by the IE method. Next, a new embedding approach is used to enhance the embedding capacity, namely quotient multi-pixel value differencing (QMPVD). In order to obtain the higher PSNR and payload, the multi-pixel differencing is hybrid with the quotient value differencing. Finally, the original data is extracted and recovered with good quality and high capacity. The performances are evaluated using several performance metrics such as PSNR, SSIM, BER, MSE, embedding capacity/payload, sensitivity, specificity, tampering ratio, correlation coefficient, number of pixel change rate and unified average changing intensity. The performance of PSNR and capacity is compared with existing approaches named Encrypted image-based RDH with Paillier cryptosystem (EIRDH-PC), EIRDH with Redundancy Transfer (EIRDH-RT) and EIRDH with pixel value ordering (EIRDH-PVO). The performance is calculated for three groups of images such as the brain, lungs and abdomen. The implementation results show that the introduced model attained better performance compared to existing approaches in terms of PSNR and capacity. Besides, the proposed approach achieved the merits of no pixel expansion, lossless and alternative order recovery.
This paper presents a novel emotion recognition model using the system identification approach. A comprehensive data driven model using an extended Kohonen self-organizing map (KSOM) has been developed whose input is a 26 dimensional facial geometric feature vector comprising eye, lip and eyebrow feature points. The analytical face model using this 26 dimensional geometric feature vector has been effectively used to describe the facial changes due to different expressions. This paper thus includes an automated generation scheme of this geometric facial feature vector. The proposed non-heuristic model has been developed using training data from MMI facial expression database. The emotion recognition accuracy of the proposed scheme has been compared with radial basis function network, multi-layered perceptron model and support vector machine based recognition schemes. The experimental results show that the proposed model is very efficient in recognizing six basic emotions while ensuring significant increase in average classification accuracy over radial basis function and multi-layered perceptron. It also shows that the average recognition rate of the proposed method is comparatively better than multi-class support vector machine. 相似文献
A submicron-scale surface acoustic wave (SAW) resonator fabricated by high-aspect-ratio X-ray lithography (XRL) and metal lift-off that operates at microwave frequencies is presented. We demonstrate that XRL is especially well suited for SAW device templating, as long submicron-scale interdigitated transducer structures can be batch patterned with excellent structure quality. 0.4–2.0 μm thick PMMA layers were structured by X-ray lithography shadow projection using silicon nitride-based X-ray masks. Structures with a critical lateral feature size of down to 200–700 nm were processed. The polymer structures served as templates in a subsequent aluminum lift-off process. The metal electrodes were successfully tested as SAW resonators for high frequency applications, e.g. around 1.3 GHz, using calibrated 1-port RF wafer probing measurements. Compared with standard fabrication techniques, the high structure quality of submicron-scale polymer templates made of unusually thick PMMA layers offers additional possibilities to fabricate thicker metal transducers. 相似文献