首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2156篇
  免费   134篇
  国内免费   2篇
电工技术   30篇
化学工业   597篇
金属工艺   42篇
机械仪表   70篇
建筑科学   60篇
矿业工程   4篇
能源动力   98篇
轻工业   448篇
水利工程   24篇
石油天然气   24篇
无线电   121篇
一般工业技术   320篇
冶金工业   103篇
原子能技术   8篇
自动化技术   343篇
  2024年   25篇
  2023年   33篇
  2022年   53篇
  2021年   122篇
  2020年   90篇
  2019年   109篇
  2018年   96篇
  2017年   100篇
  2016年   105篇
  2015年   69篇
  2014年   103篇
  2013年   176篇
  2012年   130篇
  2011年   162篇
  2010年   139篇
  2009年   144篇
  2008年   91篇
  2007年   85篇
  2006年   58篇
  2005年   49篇
  2004年   49篇
  2003年   42篇
  2002年   34篇
  2001年   22篇
  2000年   19篇
  1999年   19篇
  1998年   36篇
  1997年   25篇
  1996年   15篇
  1995年   16篇
  1994年   12篇
  1993年   14篇
  1992年   10篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1961年   1篇
排序方式: 共有2292条查询结果,搜索用时 15 毫秒
61.
There is considerable interest in incorporating stabilized vitamins into biopolymeric nanoparticles, especially in the development of carriers and active systems for pharmaceutical and food applications. Amongst biopolymer, chitosan is highly desirable owing to its good biocompatibility, biodegradability and ability to be chemically modified. In this paper, nanoparticles from three kinds of water-soluble derivative chitosan (N,N,N-trimethyl chitosan, TMC) have successfully been synthesized by ionic gelation with tripolyphosphate (TPP) anions. Combinations of concentrations of TMC and TPP have resulted in nanoparticles with varying sizes for which the capability for loading with vitamins was investigated. Zeta potential measurement and particle size analysis demonstrated that the size of the nanoparticles was optimized (196 ± 8 nm) when the lowest TMC and TPP amounts were used, i.e., 0.86 mg mL−1 and 0.114 mg mL−1 respectively. As the TMC and/or the TPP concentrations increase, the resulting size of the nanoparticles increases considerably. Three different vitamins (B9, B12 and C) were tested as additives and the final system characterized in relation to size, morphology, spectroscopic and zeta potential properties. In general, the incorporation of vitamins increased all the TMC–TPP original nanoparticle sizes, reaching a maximum diameter of 534 ± 20 nm when loaded with vitamin C. The presence of vitamins also decreases the zeta potential, with one exception observed when using vitamin C. The preliminary results of this study suggested that all TMC/TPP nanoparticles can be successfully used as a stable medium to incorporate and transport vitamins, with potential applications in foodstuffs.  相似文献   
62.
Methanol extracts of olive pomace (two‐phase olive oil extraction) and olive pulp were analysed by reverse phase HPLC and the eluted fractions were characterised by electrospray ionisation mass spectrometry. This technique allowed the identification of some common phenolic compounds, namely, verbascoside, rutin, caffeoyl‐quinic acid, luteolin‐4‐glucoside and 11‐methyl‐oleoside. Hydroxytyrosol‐1′‐β‐glucoside, luteolin‐7‐rutinoside and oleoside were also detected. Moreover, this technique enabled the identification, for the first time in Olea europaea tissues, of two oleoside derivatives, 6′‐β‐glucopyranosyl‐oleoside and 6′‐β‐rhamnopyranosyl‐oleoside, and of 10‐hydroxy‐oleuropein. Also, an oleuropein glucoside that had previously been identified in olive leaves was now detected in olive fruit, both in olive pulp and olive pomace. With the exception of oleoside and oleuropein, the majority of phenolic compounds were found to occur in equivalent amounts in olive pulp and olive pomace. Oleoside was the main phenolic compound in olive pulp (31.6 mg g?1) but was reduced to 3.6 mg g?1 in olive pomace, and oleuropein (2.7 mg g?1 in the pulp) almost disappeared (<0.1 mg g?1 in the pomace). Both these phenolic compounds were degraded during the olive oil extraction process. Copyright © 2004 Society of Chemical Industry  相似文献   
63.
64.
65.
Polymer Bulletin - In this work, electrospun fibers of poly(butylene adipate-co-terephthalate) (PBAT) and poly(N-isopropylacrylamide) (PNIPAAm) blends, PBAT/PNIPAAm, with different mass ratios,...  相似文献   
66.
CTCF is a nuclear protein initially discovered for its role in enhancer-promoter insulation. It has been shown to play a role in genome architecture and in fact, its DNA binding sites are enriched at the borders of chromatin domains. Recently, we showed that depletion of CTCF impairs the DNA damage response to ionizing radiation. To investigate the relationship between chromatin domains and DNA damage repair, we present here clonogenic survival assays in different cell lines upon CTCF knockdown and ionizing irradiation. The application of a wide range of ionizing irradiation doses (0–10 Gy) allowed us to investigate the survival response through a biophysical model that accounts for the double-strand breaks’ probability distribution onto chromatin domains. We demonstrate that the radiosensitivity of different cell lines is increased upon lowering the amount of the architectural protein. Our model shows that the deficiency in the DNA repair ability is related to the changes in the size of chromatin domains that occur when different amounts of CTCF are present in the nucleus.  相似文献   
67.
68.
The science space in a state school in Natal city was built using a composite consisting of gypsum, EPS (expanded polystyrene), shredded tire, cement and water. Mechanical and thermal resistances were evaluated. Inside the blocks, three types of fillings (EPS plates, aluminum cans and 500 mL bottles of mineral water) were placed in order to obtain a walls with higher thermal resistance, but also to give it an ecologically correct order, considering that both the tire and the EPS occupy a large space in landfills and require years to be degraded when released into the environment. Compression tests were conducted according to the rules. The experiments demonstrated that the temperature difference between the internal and external surfaces on the walls reached levels above 12.0 ℃. It was also demonstrated that the proposed composite has adequate mechanical strength to be used for sealing walls. The proposed use of the composite can contribute to reduce the significant housing deficit of Brazil, producing popular houses at low cost and with little time to work.  相似文献   
69.
Soy protein fractions rich in β-conglycinin (7S) or glycinin (11S) were freeze dried or spray dried at temperatures of 120, 150 or 180 °C. The fractions were characterized for their particle size distribution, sorption isotherms and by scanning differential calorimetry. The gelling capacity of the protein fractions was studied at pH values of 3 and 7 using oscillatory measurements, mechanical properties and water holding capacity. The rheological measurements showed that viscous modulus (G″) predominated at low temperatures and the elastic modulus (G′) at high temperatures. At pH 3, the G′–G″ crossover occurred at lower temperatures when compared to pH 7. This behaviour was more accentuated for the 11S fractions due to its capacity to form stronger gels. An increase of drying temperature led to a displacement of the gel point to higher temperatures and decreased the elasticity modulus or gelling capacity of protein fractions. These results were confirmed by the mechanical properties, since at higher temperatures the gels were more fragile and brittle, especially when formed at pH 7.  相似文献   
70.
In this work was investigated the effect of the addition of barium titanate (BaTiO3) on electrical properties of two chemically recyclable thermosets, polyhemiaminal (PHA) and polyhexahydro‐s‐triazine (PHT), both fabricated from 4,4′‐oxydianiline (ODA), an ether derivative of aniline and paraformaldehyde. Thermal and mechanical properties as well as chemical recyclability of the two polymers and their nanocomposites/nanodielectrics were also investigated. In addition, a quantitative analysis was conducted of the nanoparticle dispersion in the PHA‐/PHT‐based BaTiO3‐containing nanocomposites using transmission electron microscopy imaging and the nearest‐neighbor distance index and this index was used to analyze the investigated properties in connection with the proper mechanisms. Regarding the electrical properties for both neat polymers, conductivity values of the order of 10?8 S m?1 at 100 Hz were observed and dielectric constant values close to 2.80 for both polymers at 1 kHz. The addition of 0.5 wt% of BaTiO3 ferroelectric nanoparticles increased by about 44% the dielectric constant (1 kHz) and conductivity (102 Hz) of the PHA‐based nanocomposite. PHA and PHT exhibited glass transition temperature (Tg) values in the range 125–180 °C. An increase of 7 °C in Tg was observed after the incorporation of 0.5 wt% of BaTiO3 into PHA. Concerning the mechanical properties, values in the range 4.00–4.45 GPa for reduced modulus and 0.30–0.43 GPa for nanohardness for PHA and PHT polymers were observed. Independently of filler content or polymer matrix, both mechanical properties were enhanced after the addition of BaTiO3. The chemical recycling of PHA/PHT and all nanocomposites in the initial ODA reagent after sulfuric acid treatment was successfully characterized using the NMR and Fourier transform infrared spectroscopic techniques. © 2018 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号