首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   44篇
  国内免费   3篇
电工技术   8篇
化学工业   155篇
金属工艺   23篇
机械仪表   28篇
建筑科学   15篇
能源动力   28篇
轻工业   82篇
水利工程   3篇
石油天然气   3篇
无线电   60篇
一般工业技术   164篇
冶金工业   62篇
原子能技术   3篇
自动化技术   73篇
  2024年   2篇
  2023年   10篇
  2022年   36篇
  2021年   31篇
  2020年   25篇
  2019年   39篇
  2018年   42篇
  2017年   36篇
  2016年   44篇
  2015年   22篇
  2014年   25篇
  2013年   60篇
  2012年   29篇
  2011年   43篇
  2010年   31篇
  2009年   25篇
  2008年   27篇
  2007年   16篇
  2006年   15篇
  2005年   13篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   10篇
  1999年   11篇
  1998年   16篇
  1997年   11篇
  1996年   6篇
  1995年   14篇
  1994年   7篇
  1993年   8篇
  1992年   3篇
  1991年   7篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有707条查询结果,搜索用时 31 毫秒
101.
We report the design and synthesis of a biocompatible small‐peptide‐based compound for the controlled and targeted delivery of encapsulated bioactive metal ions through transformation of the internal nanostructures of its complexes. A tyrosine‐based short‐peptide amphiphile (sPA) was synthesized and observed to self‐assemble into β‐sheet‐like secondary structures. The self‐assembly of the designed sPA was modulated by application of different bioactive transition‐metal ions, as was confirmed by spectroscopic and microscopic techniques. These bioactive metal‐ion‐conjugated sPA hybrid structures were further used to develop antibacterial materials. As a result of the excellent antibacterial activity of zinc ions the growth of clinically relevant bacteria such as Escherichia coli was inhibited in the presence of zinc ? sPA conjugate. Bacterial testing demonstrated that, due to high biocompatibility with bacterial cells, the designed sPA acted as a metal ion delivery agent and might therefore show great potential in locally addressing bacterial infections.  相似文献   
102.
Electron beam (EB)-irradiation is increasingly being preferred to radioactive-based gamma irradiation in overcoming the constraints that affect the quality of food material. Soybean seeds of 3 soybean genotypes were exposed to 4 doses viz. 4.8, 9.2, 15.3 and 21.2 kGy of EB-irradiation and assessed for the changes in the contents of lipoxygenase isozymes and tocopherol isomers. Densitometry of protein profile revealed decreasing intensity of lipoxygenase with increasing EB dose. All the 3 lipoxygenase isozymes viz. lipoxygenase-1, -2 and -3 registered significant (P < 0.05) increasing reduction with increasing dose; though genotypic variation was noted for the magnitude of reduction at the same dose. Concomitantly, all the 3 genotypes exhibited significant (P < 0.05) decline in α-, γ- and δ-isomers of tocopherol. δ-Tocopherol was the most sensitive to EB-irradiation. EB dose, which caused minimum and maximum decline in total tocopherol content, was genotype-dependent. Decline in vitamin E activity corresponding to the dose, which induced maximum reduction for total lipoxygenase also varied in 3 genotypes. The study showed the usefulness of EB for significant inactivation of off-flavor generating lipoxygenases in soybean, with a non-significant effect on oil content and varied retention of tocopherol isomers and vitamin E activity depending upon genotype.  相似文献   
103.
Non-Newtonian fluids are the most complex ones when it comes to predicting their flow behavior. In the pre-existing models, rheological behavior in waxy crude oils is mainly affected by shear rate and thermal history of crude oils. In the present work, rheological characteristics of four different crude oils were studied by coaxial cylindrical rheometer at three different temperatures (40°C, 50°C, and 60°C) and a model was proposed keeping into consideration wax content for the first time. This model is prepared to predict the viscosity of four different crude oils with different wax content and at different temperature. The proposed model can efficiently estimate the viscosity as compared to other established models.  相似文献   
104.
105.
Transient discharging currents and steady‐state conduction in solution‐grown ethyl cellulose (EC)–poly(methyl methacrylate) (PMMA) blends measured as a function of temperature (30–80 °C) and field strength (10–100 kV cm−1) are reported. Transient currents are found to follow the Curie–VonSchweidler law, characterized by different slopes in short‐ and long‐time regions, having different decay constant values lying between 0.75–0.99, and 1.68–1.95. The corresponding activation energies are found to increase with time of measurement of discharge current. Isochronal characteristics (ie current versus temperature plots at constant times) constructed from the data seem to reveal a broad peak observed at 60 °C. The dependence of dark current at different temperatures (30–80 °C) in a metal (1)–EC–PMMA blend–metal (1)/(2) system on the applied voltage in the range 10–100 kV cm−1 has also been studied; the current is found to be strongly temperature dependent. Dipole polarization and space charge resulting from trapping of injected charge carriers in energetically distributed traps and induced dipoles created because of the piling up of charge carriers at the phase boundary of the heterogeneous components of the blend are considered to account for the observed transient currents. The results of current–voltage measurement on blends are interpreted to show that the low‐field steady‐state conduction is ohmic in nature, and in high fields the charge carriers are generated by field‐assisted lowering of coulombic barriers at the traps and are conducted through the bulk of the material by a hopping process between the localized states by a Jonscher–Ansari Poole–Frenkel mechanism. The modified P–F barrier is calculated to be 1.89 × 10−19 J (1.18 eV), 1.92 × 10−19 J (1.20 eV) and 1.95 × 10−19 J (1.22 eV) for P1, P2 and P3 blends, respectively. © 2000 Society of Chemical Industry  相似文献   
106.
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related morbidity and mortality in the western world, with limited therapeutic strategies and dismal long-term survival. Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against PDAC. However, recent studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy.  相似文献   
107.
Nowadays, growing environmental concerns have led many researchers to work in the area of natural fiber reinforced polymer composites. In this work, jute fiber has been used as reinforcement and epoxy as matrix material to develop partially biodegradable green composite with the help of hand layup followed by compression molding technique. The effect of curing temperature ranging from 80°C to 130°C on different samples was investigated for various mechanical properties. Results obtained from the various tests indicate that with increase in curing temperature, impact strength decreases, but tensile and flexural strength increases and decreases thereafter attaining the maximum value at 100°C between aforementioned temperature range. The trend obtained for mechanical properties is further justified through the study of morphology with scanning electron microscopy, and optimum curing temperature has been suggested.  相似文献   
108.
Shielded metal arc welding (SMAW) and metal inert gas (GMAW) welding process are the two most widely used welding processes. These processes are widely used for the construction and fabrication purpose in almost all type of industries. Some of the important factors which govern the weld quality in these welding processes are welding power sources, role of shielding gas (for GMAW process), welding consumables and skill of the welders. Currently, effects of these factors are evaluated by examining the quality of the weld produced and not by monitoring how welding process is affected by change in these factors. This is an indirect method because actual contribution made by individual parameter in physical process is effectively ignored. Further, this is expensive and time-consuming as the assessment can be carried out only after the weld is completed. Hence, a procedure to assess the quality of welding process using the data acquired while welding is in progress is preferred to testing of the weld for this purpose. In both SMAW and GMAW processes, welding speed, voltage and current are important parameters that affect the quality of the welds. Among these, monitoring of welding speed is relatively easy; but monitoring voltage and current is not. This is because, welding is a stochastic process in which wide variation in voltage and current occurs and duration of these variations is so short that they are not observed in the voltage and current displayed in the power source. However, with the help of a high-speed data acquisition system, voltage and current variations during actual welding process can be recorded and subsequently analysed to reveal very useful information on the welding process, and subsequently quality analysis of individual welding parameters can also be done. In the present study, the voltage and current signals acquired using a digital storage oscilloscope have been used to study SMAW and GMAW processes. Data was acquired for duration of 20 s at a sampling rate of 100,000 samples/s while welding is in progress. In the case of SMAW process, welding data was acquired for welds made using different welding power sources, but with same welder and same type of electrode. In the case of GMAW process, welds were made using same wire and same welder but with different gases for shielding and at different set currents. Dynamic variation in the voltage and current signals were carefully studied using time domain and statistical analyses. Results showed that differences in the characteristics of the different power sources used for SMAW process and effect of shielding gases and arc current on GMAW process could be easily revealed by such analysis. For SMAW process, results obtained could also be correlated with the appearance of the weld beads. Hence, a procedure involving high-speed data acquisition of voltage and current signal while welding is in progress and the statistical analysis of the acquired data have been proposed for monitoring of these two arc welding processes.  相似文献   
109.
This paper presents the theoretical investigation of CDM opportunity in a township at Jaipur, India. The purpose of study is to identify and analyze the various opportunities viz., installation of solar water heater, energy efficient lighting, energy efficient air conditioners, and energy efficient submersible water pumps in desert coolers and thus achieve a considerable (65.7?%) reduction in GHG emissions. Out of the various opportunities considered, the retrofitting with solar water heater can be recommended for CDM. Though, the retrofitting with energy efficient lighting, energy efficient air conditioners and energy efficient submersible water pumps in desert coolers claimed CO2 emission reduction of 104.84, 25.92, and 36.94?tons per annum, respectively, but the only opportunity which got through CDM was retrofitting with solar water heater claiming 115.70?tCO2 (100?%) emission reductions per annum which could result into net earnings of 115.70 CERs. The simple and discounted payback period for all four project activities are also calculated with and without CDM and tax benefits.  相似文献   
110.
Experimental restrictions imposed on the collection and detection of shortwave-infrared photons (SWIR) have impeded single molecule work on a large class of materials whose optical activity lies in the SWIR. Here we report the successful observation of room-temperature single nanocrystal photoluminescence at SWIR wavelengths using a highly efficient multielement superconducting nanowire single photon detector. We confirm that the photoluminescence from single lead sulfide nanocrystals is strongly antibunched, demonstrating the feasibility of performing sophisticated photon correlation experiments on individual weak SWIR emitters, and, more broadly, paving the way for sensitive measurements of spectral observables on infrared quantum systems that are incompatible with current detection techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号