首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99004篇
  免费   8001篇
  国内免费   4200篇
电工技术   5412篇
技术理论   12篇
综合类   6119篇
化学工业   16909篇
金属工艺   5201篇
机械仪表   6229篇
建筑科学   8903篇
矿业工程   2804篇
能源动力   2831篇
轻工业   6627篇
水利工程   1621篇
石油天然气   5652篇
武器工业   760篇
无线电   11724篇
一般工业技术   12260篇
冶金工业   4751篇
原子能技术   1158篇
自动化技术   12232篇
  2024年   389篇
  2023年   1653篇
  2022年   2839篇
  2021年   3888篇
  2020年   2985篇
  2019年   2547篇
  2018年   2781篇
  2017年   3187篇
  2016年   2919篇
  2015年   3759篇
  2014年   4753篇
  2013年   5606篇
  2012年   6220篇
  2011年   6582篇
  2010年   5861篇
  2009年   5550篇
  2008年   5330篇
  2007年   5218篇
  2006年   5359篇
  2005年   4631篇
  2004年   3156篇
  2003年   2809篇
  2002年   2737篇
  2001年   2473篇
  2000年   2401篇
  1999年   2703篇
  1998年   2286篇
  1997年   1942篇
  1996年   1867篇
  1995年   1447篇
  1994年   1342篇
  1993年   916篇
  1992年   704篇
  1991年   546篇
  1990年   408篇
  1989年   341篇
  1988年   300篇
  1987年   193篇
  1986年   141篇
  1985年   103篇
  1984年   50篇
  1983年   50篇
  1982年   51篇
  1981年   30篇
  1980年   24篇
  1979年   15篇
  1962年   42篇
  1961年   39篇
  1960年   16篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
As a representative polyoxamide, poly(hexamethylene oxamide) (PA62) has good comprehensive performance. However, the high Tm (330°C) creates an obstacle for processing. To improve the processability of PA62, poly(hexamethylene terephthalate/hexamethylene oxamide) alternating copolyamide (alt-PA6T/62) was synthesized by hexamethylene diamine-terminated 6T6-diamine and dibutyl oxalate via solution/solid state polycondensation. Random copolyamide (ran-PA6T/62) was also synthesized for comparison. The structure and properties of the copolymer were analyzed by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Wide-angle X-ray diffraction (WAXD) and the saturated water absorption test. The NMR results confirm the alternating structure of alt-PA6T/62. The DSC and TGA results demonstrate that the novel alternating copolyamide alt-PA6T/62 (Tm = 321°C, T5 = 420°C) exhibited better thermal properties than those of ran-PA6T/62 (Tm = 294°C, T5 = 412°C). The saturated water absorption of alt-PA6T/62 was found to be 3.2 wt%. These results revealed that the novel alt-PA6T/62 had an alternating sequence distribution, showed a high melting point as well as good processability and thermal stability, and possessed low saturated water absorption and excellent dimensional stability.  相似文献   
992.
Nanocrystalline cellulose (NCC) was prepared from office waste paper (OWP) by sulfuric acid hydrolysis method in this paper and it was used to prepare a series of poly (lactic acid) PLA/NCC composites by using a dissolution method in solvent N, N-dimethylformamide solution. The results indicated that with the addition of only 3 wt% NCC, the composites exhibited outstanding mechanical property. The tensile, bending and impact properties of the PLA/3NCC composite were improved by 8.2%, 13.1%, and 35.9% than those of pure PLA, respectively. On this basis, office waste paper fibers (OWF) were also used as a physical blended filler to enhance PLA/NCC composites to reduce the preparation cost of PLA composites and the perfect PLA/NCC/OWF sample was easily manufactured by melting–blending and injection molding. According to the crystallization and melting performance table, both NCC and OWF can act as nucleating agent to promote the crystallization properties on composites, while the blends did not have positive effect on thermal stability. Furthermore, the water absorption and degradation properties of PLA composites were also studied. This work not only provided a novel idea for the utilization of office waste paper but also successfully produced environment friendly composites with favorable mechanical properties and crystallization performance.  相似文献   
993.
A semi-interpenetrating polymer network superabsorbent polymer based on sodium lignosulfonate-graft-poly(acrylic acid-acrylamide)/potassium dihydrogen phosphate and polyvinyl alcohol (PVA/SL-g-P[AA-AM]/KDP) was synthesized by using solution polymerization. The PVA/SL-g-P(AA-AM)/KDP was further hydrolyzed in NaOH solution. The structure, thermal stability, and morphologies of samples were examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results of FTIR, TGA, and DSC showed that PVA interpenetration through SL-g-P(AA-AM)/KDP network has occurred, and PVA/SL-g-P(AA-AM)/KDP was successfully alkaline hydrolyzed. From the SEM images, the high porous and loose surface structure of polymers was formed after hydrolysis, which greatly increased the specific surface area. Samples after hydrolysis exhibited higher equilibrium swelling capacity (1963 g/g) compared to the nonhydrolyzed samples (866 g/g). The swelling kinetics of all samples well complied with the pseudo-second order swelling kinetics model. Simple hydrolysis treatment not only improved the swelling capacity of PVA/SL-g-P(AA-AM)/KDP but also induced an enhancement on its water retention performance, which made it potentially useful as a water retention agent in the revegetation of abandoned mines or slope wasteland.  相似文献   
994.
High loadings of fillers are usually needed to achieve high-thermal conductivity (TC) of polymer-based composites, which inevitably sacrifices processability and meanwhile causes high-cost. Therefore, it is of great significance to achieve high-TC composites under low-filler loading. Here, a novel p-phenylenediamine (PPD) modified expanded graphite (EG-PPD)/epoxy (EP) composite with high TC and low-filler content was successfully prepared via pre-dispersion and vacuum assisted mixing strategy. With the improved interfacial compatibility between EG and EP by PPD, the prepared EG-PPD/EP composite exhibited excellent thermal management performance, resulting in the TC of which reached 4.00 W·m−1·K−1 with only 10 wt% (5.59 vol%) of EG-PPD, which is approximately 19 times higher than that of pure EP. Meantime, the interface thermal resistance of EG-PPD/EP composite between EG-PPD and EP is reduced by 33% compared with EG/EP composite. This composite with excellent TC property is expected to be used in thermal management field.  相似文献   
995.
Being a new kind of nanomaterials, aromatic polyamide nanofibers (ANF) have been much highlighted in recent studies. We here demonstrate an isopropyl alcohol (IPA) accelerated chemical cleavage on poly (p-phenylene terephthalamide) chopped fibers, which provides an efficient preparation method of ANF. The comprehensive study on the processes accelerated by different alcohols revealed that the preparation time of ANF in the mixed medium of dimethyl sulfoxide (DMSO)-alcohol (20:1 in volume) was shorten to 45 min and 75 min for methanol (ethanol) and isopropanol, respectively. However, the nanofibers prepared in DMSO-IPA exhibited the minimum in axial and radial dimensions, providing the finest and most uniform diameter of 16 nm. The corresponding ANF films through vacuum assisted filtration also showed the highest tensile strength of 150 MPa, in comparison with those of the ANF films prepared using other alcohols, which were about 110 MPa. Furthermore, ANF/silicon hybrid films were prepared by the ionic ring-opening reaction followed by the alkoxysilane condensation and nanoparticle fabrication. By changing the organo functional groups in the alkoxysilane, the surface of the films were adjustable in a wide contact angle range from 56° (hydrophilic) to 150° (superhydrophobic), suggesting the amendable interfacial properties potential applicable to composite fabrication with most of the resin matrix.  相似文献   
996.
This study reports a green and powerful strategy for preparing cellulose nanocrystal (CNC)/graphene oxide (GO)/natural rubber (NR) nanocomposites hosting a 3D hierarchical conductive network. Due to good dispersibility and amphiphilic nature of CNC, well dispersed CNC/GO nanohybrids were prepared. Hydrogen bonding interactions between CNC and GO greatly enhanced the stability of the CNC/GO nanohybrids. CNC/GO nanohybrids were introduced into NR latex under sonication and the mixture was cast. Self-assembled CNC/GO nanohybrids preferentially dispersed in the interstice between latex microspheres allowing the construction of a 3D hierarchical conductive network. By combining strong hydrogen bonds and 3D conductive network, both electrical conductivity and mechanical properties (tensile strength and modulus) have been significantly improved. The electrical conductivity of the nanocomposite with 4 wt% GO and 5 wt% CNC exhibited an increase of nine orders of magnitude compared to the nanocomposite with only 4 wt% GO; meanwhile, the electrical percolation threshold was 3-fold lower than for NR/GO composites.  相似文献   
997.
A simple and feasible method to enhance the wear resistance of ultra-high molecular weight polyethylene (UHMWPE) fibers was reported. The graphite oxide (GO) prepared using improved Hummer's method was surface modified with hexadecylamine to improve its compatibility with UHMWPE. Combined with well-dispersion of modified-GO (m-GO) in dichloromethane and the fact that the viscosity of UHMWPE suspension can be decreased by dichloromethane, the well dispersed m-GO/dichloromethane was added into UHMWPE suspension to improve m-GO dispersion in UHMWPE fibers. Finally, UHMWPE fibers with different m-GO concentration were prepared using gel spinning technology. The effect of m-GO concentration on the structure and properties of modified UHMWPE fibers were investigated. The results indicated that the melting temperature and crystallinity of m-GO modified UHMWPE fibers increased with increasing of m-GO concentration, while the fiber's crystal sizes and orientation increased, thus the tensile strength of m-GO modified UHMWPE fibers remained almost undamaged. The introduction of m-GO is beneficial to the formation of smooth transfer film on fiber's surface, which enhanced the self-lubrication of UHMWPE fibers. Compared with pure UHMWPE fiber, the UHMWPE fiber containing 1.5 wt% m-GO had enhanced wear resistance by 55.4% and still maintained high tensile strength of 29.98 cN dtex−1.  相似文献   
998.
为提高水性环氧涂料的固化性能和适用期,以自制聚酰胺和生物基戊二胺为起始原料,聚乙二醇二缩水甘油醚( PEGGE)为亲水链段,双酚 A型环氧树脂( E-51)为疏水链段,邻甲苯缩水甘油醚( CGE)为封端剂制备了非离子型低温水性环氧固化剂,并与自制水性环氧乳液复配制得双组分水性环氧涂料。考察了环氧固化剂合成工艺参数及涂膜各项性能。结果表明:该固化剂含有较长的柔性脂肪烃碳链和聚醚链段能够提高涂膜的柔韧性;双酚 A型环氧树脂参与扩链反应能够解决与乳液不兼容等问题;苯环结构增加了涂膜的硬度;涂膜室温固化后性能优异,具有良好的物理机械性能、耐水性、耐酸碱性和耐盐雾性。  相似文献   
999.
随着中长期交易电量规模持续扩大,交易结果不断挤压系统可调度空间,威胁着系统安全运行,且大量交易结果可能由于电网运行约束被削减,容易引发市场成员对市场公平性的质疑.因此,探究中国计划电量与市场电量"双轨制"下的中长期交易电量放开规模,既有助于明确电力市场的演变态势,又有利于实现电网运行安全和经济效率的统筹优化.文中提出了中长期交易电量放开规模测算方法,该方法兼顾市场化电量出清优化与电网运行安全,构建一个考虑市场经济效益和电网运行约束的双层优化模型.上层为以社会福利最大为目标的市场化电量优化出清模型,下层为考虑输电线路传输容量、系统供热需求、机组检修安排、电厂最小开机方式等电网运行约束的市场化电量校核模型.针对该双层优化模型,提出上下层迭代算法进行求解,并将市场化电量执行约束松弛化处理,以保证模型的可解性.中国某省级电网的实际算例分析验证了所提模型与算法的有效性和实用性.  相似文献   
1000.
通过纳米碳纤维(CNFs)在聚甲醛(POM)基体中的均匀分散以及取向,制备了具有优异力学性能和热性能的POM/CNFs复合材料。利用扫描电子显微镜、透射电子显微镜、拉伸性能测试、热重分析、动态热机械分析测试表征了POM/CNFs复合材料的结构和力学、热学性能。结果表明,CNFs与POM分子链形成氢键相互作用,促进了CNFs在POM基体内分散,同时使POM/CNFs复合材料的结晶度显著提高。随着CNFs含量增加,POM/CNFs复合材料的拉伸强度、储能模量和损耗模量均得到提高。当添加0.5%的CNFs时,拉伸强度、储能模量及损耗模量分别提高了20.5%,127%和58%。进一步研究了高温拉伸对POM/CNFs复合材料性能的影响。结果表明,CNFs沿拉伸方向定向排列,同时复合材料拉伸后结晶度提高,拉伸强度显著增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号