首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1366篇
  免费   38篇
  国内免费   4篇
电工技术   125篇
综合类   2篇
化学工业   389篇
金属工艺   36篇
机械仪表   48篇
建筑科学   24篇
能源动力   97篇
轻工业   99篇
水利工程   4篇
无线电   94篇
一般工业技术   284篇
冶金工业   52篇
原子能技术   46篇
自动化技术   108篇
  2023年   8篇
  2022年   22篇
  2021年   28篇
  2020年   14篇
  2019年   14篇
  2018年   19篇
  2017年   14篇
  2016年   45篇
  2015年   21篇
  2014年   34篇
  2013年   97篇
  2012年   77篇
  2011年   77篇
  2010年   81篇
  2009年   71篇
  2008年   66篇
  2007年   66篇
  2006年   63篇
  2005年   55篇
  2004年   45篇
  2003年   43篇
  2002年   38篇
  2001年   25篇
  2000年   22篇
  1999年   24篇
  1998年   34篇
  1997年   25篇
  1996年   28篇
  1995年   22篇
  1994年   17篇
  1993年   18篇
  1992年   12篇
  1991年   13篇
  1990年   17篇
  1989年   17篇
  1988年   8篇
  1987年   15篇
  1986年   10篇
  1985年   10篇
  1984年   15篇
  1983年   14篇
  1982年   14篇
  1981年   11篇
  1980年   9篇
  1979年   11篇
  1978年   5篇
  1977年   3篇
  1976年   6篇
  1975年   2篇
  1971年   2篇
排序方式: 共有1408条查询结果,搜索用时 15 毫秒
51.
Two types of organic–inorganic hybrid base catalysts are prepared. Organic-functionalized molecular sieves (OFMSs), particularly “amine-immobilized porous silicates”, are designed based on common idea to immobilize catalytic active sites on silicate surface. Silicate–organic composite materials (SOCMs), such as “ordered porous silicate–quaternary ammonium composite materials”, are the precursors of ordered porous silicates obtained during the synthesis. Both the OFMS and the SOCM are used as the catalysts for Knoevenagel condensation. Among the OFMSs, there is clear tendency that the use of molecular sieve with larger pore volume and/or surface area gives the product in higher yield. Aminopropylsilyl (AP)-functionalized mesoporous silicates such as AP-MCM-41 gives the product in high yield under mild conditions. No loss of activity is observed after repeated use for three times. The SOCMs are also active for the same reaction. The precursors of the mesoporous silicates are more active than those of microporous silicates. This material can be repeatedly used without significant loss of activity. High activity is not due to the leached species. The active sites of the SOCM catalysts are considered to be SiO moieties located on the pore-mouth. Activity of the SOCM increases when the reaction is carried out without solvent, whereas decrease in activity of the OFMS is observed in the solvent-free system.  相似文献   
52.
We fabricated xBaTiO3 (BT)/(1-x)[BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3] (BT-BMT-BF)?+?0.1?wt%MnCO3 composites by spark plasma sintering and investigated the effect of BT content x, BT powder size, and BT-BMT-BF composition on piezoelectric properties. For xBT/(1-x)(0.3BT-0.1BMT-0.6BF) +?0.1?wt%MnCO3 (x?=?0–0.75) composites with a 0.5-µm BT powder, the dielectric constant was increased with x, and the relative density was decreased at x?=?0.67 and 0.75, creating optimum BT content of x?=?0.50 with a piezoelectric constant d33 of 107?pC/N. When a larger 1.5-µm BT powder was utilized for the composite with x?=?0.50, the d33 value increased to 150?pC/N due to the grain size effect of the BT grains. To compensate for a compositional change from the optimum 0.3BT-0.1BMT-0.6BF due to partial diffusion between the BT and 0.3BT-0.1BMT-0.6BF grains, a 0.5BT/0.5(0.275BT-0.1BMT-0.625BF)?+?0.1?wt%MnCO3 composite with the 1.5-µm BT powder was fabricated. We obtained an increased d33 value of 166?pC/N. These results provided a useful composite design to enhance the piezoelectric properties.  相似文献   
53.
Enyzmatic amidation of the primary amines β-alanine ethyl ester and 3-aminopropionitrile with methyl laurate by means of immobilized lipase (Candida antarctica lipase, CAL) resulted in the formation in good yield of N-lauroyl-β-alanine ethyl ester and 3-(N-lauroylamino)-propionitrile, respectively. When 3-amino-propionitrile was used as substrate, diisopropyl ether was a suitable solvent. Changing the reaction temperature (12–80°C) did not affect the yields, and room temperature was a suitable temperature for this reaction. In the investigation of reaction conditions, the use of equimolar amounts (5 mmol) of substrate and ester, along with 0.5 g of CAL, in diisopropyl ether gave the best yield (99.3%) after 24 h of incubation at 24°C. The enzyme activity in the amidation reaction did not decrease even after six uses. With β-alanine ethyl ester hydrochloride as substrate, diisopropyl ether was unsuited as a solvent owing to the low solubility of the substrate in this solvent. In this reaction, the best yield (82.0%) was attained by using dioxane as solvent. CAL achieved higher extents of amide synthesis with long-chain than with short-chain ester substrates. The enzyme accepted only nonbulky primary amines as substrates.  相似文献   
54.
Endothelial glycocalyx (GCX) is located on the apical surface of vascular endothelial cells and is composed of a negatively‐charged network of proteoglycans and glycoproteins. The GCX plays an important role in maintaining the integrity of vascular walls and preventing leakage of plasma. Therefore, degradation of the GCX is believed to lead to pathological leakage of plasma. Because the GCX is a very thin layer, its ultrastructural image has been demonstrated on electron microscope. To explore the function of the GCX, it should be visualized by a microscope in vivo. Thus, we developed in vivo visualization technique of the GCX under fluorescence microscopy using a mouse dorsal skinfold chamber (DSC) model. To label and visualize the GCX, we used fluorescein isothiocyanate (FITC)‐labeled lectin, which has a high specificity for sugar moieties. We examined the affinity of the different lectins to epivascular regions under an intravital fluorescent microscope. Among seven different lectins we examined, FITC labeled Triticum vulgaris (wheat germ) agglutinin (WGA) delineated the GCX most clearly. Binding of WGA to the GCX was inhibited by chitin hydrolysate, which contained WGA‐binding polysaccharide chains. Furthermore, the septic condition attenuated this structure, suggesting structural degradation of endothelial GCX layer. In conclusion, FITC‐labeled WGA lectin enabled visualization of endothelial GCX under in vivo fluorescence microscopy. Microsc. Res. Tech. 79:31–37, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
55.
The authors proposed double-layer-type environmentally friendly lubricants, which were composed of an undercoat, superior in adhering to a material, and an overcoat, superior in reducing the friction between the material and the die. The performance of these lubricants for cold forging was evaluated by the ring compression test, the combined forward rod-backward can extrusion-type friction test and the combined forward conical can-backward straight can extrusion-type friction test. The double-layer-type lubricants showed comparable friction characteristics and anti-pick-up properties to a conversion coating lubricant, when the film thickness and surface treatment before coating were improved. In a practical application by cold multistage forging, the double-layer-type lubricants showed a similar performance to a conversion coating lubricant.  相似文献   
56.
Dense PbTiO3 ceramics consisting of submicrometer-sized grains were prepared using the spark-plasma-sintering (SPS) method. Hydrothermally prepared PbTiO3 (0.1 μm) was used as a starting powder. The powder was densified to ≳98% of the theoretical X-ray density by the SPS process. The average grain size of the spark-plasma-sintered ceramics (SPS ceramics) was ≲1 μm, even after sintering at 900°–1100°C, because of the short sintering period (1–3 min). The measured permittivity of the SPS ceramics showed almost no frequency dependence over the range 101–106 Hz, mainly because pores were absent from the ceramics. The coercive field of the SPS ceramics was somewhat higher than that of conventionally sintered ceramics, which could be attributed to the small-grained microstructures of the SPS ceramics.  相似文献   
57.
A thin film (60 μm thick) of a gadolinium-doped ceria (GDC) electrolyte was prepared by the doctor blade method. This film was laminated with freeze-dried 42 vol% NiO–58 vol% GDC mixed powder and pressed uniaxially or isostatically under a pressure of 294 MPa. This laminate was cosintered at 1100 °–1500 °C in air for 4–12 h. The laminate warped because of the difference in the shrinkage of the electrolyte and electrode during the sintering. A higher shrinkage was measured for the electrode at 1100 °–1200 °C and for the electrolyte at 1300 °–1500 °C. The increase of the thickness of anode was effective in decreasing the warp and in increasing the density of the laminated composite. The maximum electric power density with a SrRuO3 cathode using 3 vol% H2O-containing H2 fuel was 100 mW/cm2 at 600 °C and 380 mW/cm2 at 800 °C, respectively, for the anode-supported GDC electrolyte with 30 μm thickness.  相似文献   
58.
Submicrometer SiO2-Al2O3 powders with compositions of 46.5 to 76.6 wt% Al2O3 were prepared by hydrolysis of mixed alkoxides. Phase change, mullite composition, and particle size of powders with heating were analyzed by DTA, XRD, IR, BET, and TEM. As-produced amorphous powders partially transformed to mullite and Al-Si spinel at around 980°C. The compositions of mullite produced at 1400° and 1550°C were richer in Al2O3 than the compositions of stable mullite solid solutions predicted from the phase diagram of the SiO2-Al2O3 system. Particle size decreased with increasing Al2O3 content. The sintered densities depended upon the amount of SiO2-rich glassy phase formed during sintering and the green density expressed as a function of particle size.  相似文献   
59.
A novel photoreactive polymer with histidine polar groups was synthesized through the copolymerization of two types of methacrylic acid, one carrying histidine groups and the other carrying azidoaniline groups. The polymer was photoimmobilized on polyester disks for surface modification. The effect of the surface modification on the hydrophilic and biofouling properties was investigated. Static contact angle measurements showed that the polymeric surface was modified to be comparatively hydrophilic in the polymer‐immobilized region. Micropattern immobilization was carried out with a photolithographic method. Atomic force microscopy measurements showed that the polymer was formed on the disks in response to ultraviolet irradiation. Protein adsorption was reduced on the polymer‐immobilized regions, and in those regions, spreading and adhesion of mammalian cells were reduced in comparison with that in nonimmobilized regions. In conclusion, a novel histidine‐containing polymer was photoreactively immobilized on a conventional polymer surface, and it had reduced interaction with proteins and cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
60.
Catalytic properties of three-dimensional zeolites, Y (FAU), Beta (BEA), and CIT-1 (CON) zeolites were examined in the alkylation, isopropylation, sec-butylation, and tert-butylation, of biphenyl (BP), and compared to those of H-mordenite (MOR). The selectivities for 4,4′-dialkylbiphenyl (4,4′-DABP) varied with the types of zeolite and of alkylating agent. FAU, BEA, and CON gave only low selectivities for 4,4′-diisopropylbiphenyl (4,4′-DIPB) in the isopropylation, and predominant isomers were bulky and thermodynamically unstable 2,x′-DIPB (2,2′-, 2,3′-, and 2,4′-) at lower temperatures, and bulky and thermodynamically stable 3,4′- and 3,3′-DIPB at higher temperatures: this is quite different from catalytic features over MOR, which gave 4,4′-DIPB with high selectivities at moderate temperatures. These results suggest that FAU, BEA, and CON have no shape-selective nature in the isopropylation, and that the reaction is principally controlled kinetically at lower temperatures, and thermodynamically at higher temperatures. The sec-butylation gave similar results to the isopropylation. Although the selectivities for 4,4′-di-sec-butylbiphenyl (4,4′-DSBB) were higher than those in the isopropylation, predominant isomers were 2,x′-DSBB (2,2′-, 2,3′-, and 2,4′-) at lower temperatures, and 3,4′- and 3,3′-DSBB at higher temperatures. The tert-butylation gave 4,4′-di-tert-butylbiphenyl (4,4′-DTBB) in moderate to high selectivities over all zeolites at moderate temperatures: the selectivity for 4,4′-DTBB was higher than 80% over BEA and CON; however, it still remained at 50% over FAU. FAU channels with super cages are too large for selective formation of 4,4′-DTBB.

From these results, it is concluded that the selectivity for 4,4′-DABP in the alkylation over MOR, FAU, BEA, and CON is determined by the exclusion of bulky isomers at their transition states, and that the exclusion is caused by the steric restriction at the transition states of bulky isomers by the zeolite channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号