首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   13篇
化学工业   96篇
矿业工程   1篇
能源动力   1篇
轻工业   30篇
无线电   3篇
一般工业技术   9篇
原子能技术   1篇
自动化技术   1篇
  2024年   5篇
  2023年   9篇
  2022年   1篇
  2021年   9篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   7篇
  2013年   5篇
  2012年   3篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   10篇
  2006年   4篇
  2005年   2篇
  2004年   9篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   9篇
  1996年   4篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
1.
描述了转杯纺纱机Autocoro的最新开发成果之一--Fancynation花式纱系统.详细讨论了用于牛仔纱的特殊花型、卷绕过程、接头和使用Fancynation生产多种花式纱的工艺.  相似文献   
2.
原材料成本推动Autocoro纺纱工艺发展.最近几年纱线生产成本在总成本中的份额不断地在增加.以前纱线生产成本也许占总成本的一半,目前已达75%.介绍了纺纱厂应对这种趋势的方法.  相似文献   
3.
The compound 2Tb2O3· Al2O3 was fabricated, and selected properties were investigated. The room-temperature X-ray diffraction pattern was indexed and the lattice parameters were calculated. Powder density was determined and used to calculate the number of molecules per unit cell (Z). This allowed calculation of a theoretical density. The material was characterized with regard to thermal expansion and indentation hardness and toughness. It was found to exhibit a rapid and reversible polymorphic transformation at high temperature.  相似文献   
4.
Composites of silicon carbide (SiC) with up to 30 vol% of dysprosia (Dy2O3) were fabricated by hot pressing and hot isostatic pressing. The effects of Dy2O3 dispersions on the microstructure and on selected mechanical properties of the composites were investigated. When 10-15 vol% of Dy2O3 was dispersed in the SiC matrix, the fracture toughness increased by ∼40%, whereas the flexural strength was comparable to that of unreinforced SiC. The increased fracture toughness was due to crack deflection, in conjunction with crack-interface grain bridging, and was not related to a phase transformation of Dy2O3 in the matrix.  相似文献   
5.
Fiber pushout tests were used to quantify the effects of fiber coating thickness on the mechanical properties of two model composite systems: a monazite-coated (LaPO4-coated) alumina (Al2O3) fiber in an Al2O3 matrix and a LaPO4-coated yttrium aluminum garnet (YAG) fiber in an Al2O3 matrix. Interface properties were quantified using the Liang and Hutchinson (LH) pushout model and mechanistically rationalized by considering the change in residual thermal stresses with changes in the coating thickness. Measures of the pure Mode II interfacial fracture energy, the coefficient of friction, and a radial clamping pressure are extracted by fitting the LH equations to the experimental results. Using the approach that has been developed herein, a methodology is available for measuring the interfacial properties, predicting the effect of coating thickness, and selecting the coating thickness to  相似文献   
6.
Bamboo is a fast‐growing, readily available natural material with tensile specific strength equivalent to that of steel (250–625 MPa/g/cm3). In the pursuit of sustainable construction materials, a composite was made with potassium polysialate siloxo geopolymer as the matrix and randomly oriented chopped bamboo fibers (Guadua angustifolia) from the Amazon region as the reinforcement. Four‐point flexural strength testing of the geopolymer composite reinforced with bamboo fibers was carried out according to ASTM standard C78/C78M‐10e1. Potassium‐based metakaolin geopolymer reinforced with 5 wt% (8 vol%) untreated bamboo fibers yielded 7.5 MPa four‐point flexural strength. Scanning electron microscopy and optical microscopy were used to investigate the microstructure. In addition, X‐ray diffraction was used to confirm the formation of geopolymer.  相似文献   
7.
The crystallography, microstructures, and phase transformation mechanisms in dicalcium silicate (Ca2SiO4) were studied by TEM. Three types of superlattice structures were observed in the α'L and β phases. Almost all β grains were twinned and strained. Symmetry-related domain structures inherited from previous high-temperature transformations were observed in β grains. Both the α→α'H and α'L→β transformations were considered to be ferroelastic, and spontaneous strains were calculated. In terms of the crystal structures, the major driving force for the β→γ transformation is proposed to be strains and cation charge repulsions in the β structure. This mechanism can be displacive, but it needs to overcome a comparatively high energy barrier.  相似文献   
8.
9.
A composite of O′SiAlON (Si2-xAlxN2-xO1+x, with x 0.14) reinforced with 20 vol.% SiC monofilaments was fabricated by hot-pressing, at 1600°C, for 2 h under 34 MPa pressure. The mechanical and interfacial properties of the composites, as-fabricated as well as post-oxidized, were, investigated. The composite exhibited a significant improvement in ultimate flexure strength (640 MPa) and work of fracture (42 kJ m−2) compared with that (350 MPa and 1.8 kJ m−2, respectively) of the monolithic material. These mechanical properties were slightly increased after the composite was heat treated for 24 h in air at 1200 and 1300°C. However, the composite exhibited a significant degradation in ultimate strength, while the work of fracture (WOF) remained unchanged after exposure in air at temperatures beyond 1400°C. The as-fabricated composite revealed a low interfacial shear strength (6.2 MPa) and a frictional sliding stress (3.2 MPa). After the composite was oxidized at elevated temperatures, the interfacial bonding and sliding stresses were reduced to noticeable extents, resulting from the degradation of the carbon coating layer of the SiC monofilaments.  相似文献   
10.
    
This work presents a systematic study of the shear properties of a potassium-based geopolymer reinforced with distinct types of fibers. Chopped basalt reinforcements in lengths from 3 mm up to 50 mm and 13 μm in diameter were compared with thicker 20-mm length, basalt mini bars, sand-coated basalt mini rods, and steel fibers. The samples were tested under a V-notched rail shear tests (ASTM D7078), coupled with optical measurements, namely, digital image correlation, allowing a novel study of their crack patterns and failure modes under shear loading. In general, the use of chopped fibers resulted in shear strengths of up to 9 MPa and shear moduli of 4.3 GPa, with no significant variation with fiber length increments, neither in shear stress nor strain at peak load (0.1%). Mini bars and steel fiber reinforcements resulted in slightly lower shear stresses of 7.1 and 8.4 MPa, respectively. They exhibited greater strain values at peak loads, up to 2.1% which were attributed to fiber-matrix enhanced adhesions, thereby allowing gradual debonding and increased ductility. This effect was also recorded for mini rods, but at much lower strength levels, which did not contribute to their multiple cracking capacities. The alignment of the mini rods in 45° directions resulted in a 50% increase in shear stress, showing the feasibility of tailoring the manufacturing process to attend to distinct demands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号