排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
电催化二氧化碳还原反应(CO2RR)被认为是一种潜在的碳循环技术,因为它可以利用CO2作为资源在温和条件下生产高附加值燃料和化学品.因此,开发高效的二氧化碳还原反应催化剂极其重要.本文设计了一系列TM-N2O2Cx (TM=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn)单原子催化剂,并利用密度函数理论研究了其对CO2RR的催化活性.这些TM-N2O2Cx催化剂在相对较低的过电位下对三种不同的产物,包括CH4、CO和HCOOH,表现出优异的CO2RR产品选择性,其中ScN2O2Cx、Mn-N2O2Cx、Zn-N2O2Cx的CO2RR产品是CO,V-N2 相似文献
2.
用不同物质的量的β-FeOOH对蒙脱土(MMT)进行改性制备出一系列β-FeOOH-MMT(x),并将其与过氧化氢(H2O2)联用降解罗丹明B(RhB)。考察了RhB模拟废水脱色的影响因素,并研究了不同处理方法的协同效应。结果表明:在pH为5.2、β-FeOOH-MMT(3.5)用量为2 g/L、n(H2O2)∶n(Fe)=50∶1条件下搅拌10 min,对20 mg/L的RhB去除率可高达89.3%;对β-FeOOH-MMT(x)进行了拉曼光谱和扫描电镜表征。β-FeOOH-MMT(3.5)表现出丰富的孔结构;β-FeOOH-MMT(3.5)和H2O2对降解RhB模拟废水产生了协同效应,降解反应较为接近表观一级动力学,速率增强因子可达到29.32。 相似文献
3.
4.
以偏苯三甲酸和Co(NO3)2?6H2O为原料,通过溶剂热法合成了一种钴基金属有机聚合物(Co-MOP).然后对Co-MOP进行高温(500、600、700℃)煅烧得到Co-MOP衍生材料(Co-MOP-500、Co-MOP-600、Co-MOP-700).采用XRD、SEM、TEM、XPS、BET对Co-MOP及其衍生材料进行了结构和形貌表征.将Co-MOP衍生材料用作锂离子电池负极材料,并进行了电化学性能测试.结果表明,Co-MOP衍生材料均为Co3O4,Co-MOP-600形成了较为稳定结构的多孔球,较好地保持了Co-MOP的形貌,其比表面积为19.9 m2/g.Co-MOP-600具有优异的电化学性能.在100 mA/g电流密度下,Co-MOP-600电极的首圈放电比容量达到1818.5 mA·h/g,循环100圈后其比容量还能维持在1308.5 mA·h/g,Co-MOP-600稳定的多孔球形结构为锂离子的储存提供了更多的活性位点和运输通道. 相似文献
5.
6.
以竹笋为原料炭化获得生物质炭,再用氢氧化钾活化得到多孔生物质炭,采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和氮气物理吸附等方法对多孔生物质炭的微观结构和形貌进行了表征。以此多孔生物质炭作负极材料探究其电化学性能,结果表明在1 000 mA/g电流密度下,材料的首次充电比容量为286.9 mA·h/g,循环50次后充电比容量保持在201.8 mA·h/g,循环500次后充电比容量仍有221.5 mA·h/g,表明此多孔炭材料具有优良的电化学循环性能,使其有望成为具有竞争力的锂电池负极材料。 相似文献
7.
8.
采用水热法成功地合成了前驱体,并在氮气条件下煅烧得到氮掺杂的碳化铁/碳立方体。通过XRD、BET、 SEM、TEM对目标产物进行了表征,研究了氮掺杂的碳化铁/碳立方体的微观结构、表面形貌。氮掺杂的碳化铁/碳立方体作为锂离子负极材料的电化学测试表明,在200 m A/g的电流密度下首次可逆容量达到889 m A·h/g,循环200次后,容量保持率为88.1%。同时,电流密度从0.1 A/g增加到5 A/g,容量具有一定的衰减,但恢复到0.1 A/g时,容量几乎维持到原来的水平,表明其具有良好的倍率性能。所以,制备的氮掺杂的碳化铁/碳多孔立方体具有较高的比容量、良好的循环性能和广泛的应用前景。 相似文献
9.
为了寻求优异电化学性能的新型金属有机聚合物基负极材料,以偏苯三甲酸作为有机配体和六水硝酸钴进行配位,通过水热法合成了一种新型的钴基金属有机聚合物(Co-MOP)。在空气气氛下,对Co-MOP分别以500 ℃、600 ℃、700 ℃高温煅烧获得相应的Co-MOP-500、Co-MOP-600、Co-MOP-700衍生材料。Co-MOP衍生材料用作锂离子电池负极材料进行了研究。电化学测试结果显示Co-MOP-600展现出了优异的电化学性能。在100 mA/g的电流密度下,Co-MOP-600电极的首圈放电比容量达到1818.5 mAh/g,循环100圈后比容量还能维持1308.5 mAh/g。 相似文献
10.
以偏苯三甲酸和Co(NO3)2?6H2O为原料,通过溶剂热法合成了一种钴基金属有机聚合物(Co-MOP).然后对Co-MOP进行高温(500、600、700℃)煅烧得到Co-MOP衍生材料(Co-MOP-500、Co-MOP-600、Co-MOP-700).采用XRD、SEM、TEM、XPS、BET对Co-MOP及其衍生材料进行了结构和形貌表征.将Co-MOP衍生材料用作锂离子电池负极材料,并进行了电化学性能测试.结果表明,Co-MOP衍生材料均为Co3O4,Co-MOP-600形成了较为稳定结构的多孔球,较好地保持了Co-MOP的形貌,其比表面积为19.9 m2/g.Co-MOP-600具有优异的电化学性能.在100 mA/g电流密度下,Co-MOP-600电极的首圈放电比容量达到1818.5 mA·h/g,循环100圈后其比容量还能维持在1308.5 mA·h/g,Co-MOP-600稳定的多孔球形结构为锂离子的储存提供了更多的活性位点和运输通道. 相似文献