首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   23篇
  国内免费   1篇
电工技术   8篇
综合类   2篇
化学工业   161篇
金属工艺   8篇
机械仪表   14篇
建筑科学   13篇
能源动力   26篇
轻工业   42篇
水利工程   8篇
石油天然气   4篇
无线电   28篇
一般工业技术   116篇
冶金工业   16篇
自动化技术   108篇
  2024年   3篇
  2023年   14篇
  2022年   21篇
  2021年   39篇
  2020年   17篇
  2019年   16篇
  2018年   20篇
  2017年   23篇
  2016年   33篇
  2015年   21篇
  2014年   17篇
  2013年   48篇
  2012年   30篇
  2011年   31篇
  2010年   20篇
  2009年   38篇
  2008年   24篇
  2007年   19篇
  2006年   17篇
  2005年   9篇
  2004年   11篇
  2003年   3篇
  2002年   13篇
  2001年   9篇
  2000年   8篇
  1999年   9篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
排序方式: 共有554条查询结果,搜索用时 31 毫秒
31.
The purpose of this study was to estimate total arsenic concentration in different tissues (leg, breast, liver and heart) of broiler chicken by hydride generation atomic absorption spectrometry (HGAAS) and graphite furnace atomic absorption spectrometry (GFAAS), prior to microwave assisted acid digestion. The accuracy of the techniques was evaluated by using certified reference material DORM-2. The percentage recoveries of total As were observed as 100.6% and 99.4% for HGAAS and GFAAS, respectively. The precision of the techniques, expressed as relative standard deviation, was observed as 1.71% and 4.18% for HGAAS and GFAAS measurements, respectively. The limits of detection for HGAAS and GFAAS were 0.025 μg/g and 0.052 μg/g, respectively. The concentrations of total arsenic in different tissues of broiler chicken were found in the range of 2.19–5.28, 2.15–5.22, 2.97–7.17 and 2.68–6.36 μg/g for leg, breast, liver and heart tissues, respectively. At a mean level of chicken consumption (60 g/person/day), people may ingest in the range of 72.0–85.1 μg arsenic/person/day from chicken alone.  相似文献   
32.
The aim of this study was to prepare magnetic beads that could be used for the removal of heavy‐metal ions from synthetic solutions. Magnetic poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) [m‐poly(EGDMA–VTAZ)] beads were produced by suspension polymerization in the presence of a magnetite Fe3O4 nanopowder. The specific surface area of the m‐poly(EGDMA–VTAZ) beads was 74.8 m2/g with a diameter range of 150–200 μm, and the swelling ratio was 84%. The average Fe3O4 content of the resulting m‐poly(EGDMA–VTAZ) beads was 14.8%. The maximum binding capacities of the m‐poly(EGDMA–VTAZ) beads from aquous solution were 284.3 mg/g for Hg2+, 193.8 mg/g for Pb2+, 151.5 mg/g for Cu2+, 128.1 mg/g for Cd2+, and 99.4 mg/g for Zn2+. The affinity order on a mass basis was Hg2+ > Pb2+ > Cu2+ > Cd2+> Zn2+. The binding capacities from synthetic waste water were 178.1 mg/g for Hg2+, 132.4 mg/g for Pb2+, 83.5 mg/g for Cu2+, 54.1 mg/g for Cd2+, and 32.4 mg/g for Zn2+. The magnetic beads could be regenerated (up to ca. 97%) by a treatment with 0.1M HNO3. These features make m‐poly(EGDMA–VTAZ) beads potential supports for heavy‐metal removal under a magnetic field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
33.
This paper describes a melding of an established set of hydrological component processes to obtain a full-scale model for reservoir sedimentation. The goal is to achieve a probabilistic system relating reservoir sedimentation to standard injection, river flow, particle transport, and dam storage subsystems. In the conclucing section, it is found that for a certain assembly of process components, the sedimentation process is Poisson, with parameters interpretable in terms of physical variables. Moreover, for the resulting parameters, a Gaussian approximation can confidently be adopted.  相似文献   
34.
Chronic liver disease (CLD) is a global threat to the human population, with manifestations resulting from alcohol-related liver disease (ALD) and non-alcohol fatty liver disease (NAFLD). NAFLD, if not treated, may progress to non-alcoholic steatohepatitis (NASH). Furthermore, inflammation leads to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Vitexin, a natural flavonoid, has been recently reported for inhibiting NAFLD. It is a lipogenesis inhibitor and activates lipolysis and fatty acid oxidation. In addition, owing to its antioxidant properties, it appeared as a hepatoprotective candidate. However, it exhibits low bioavailability and low efficacy due to its hydrophobic nature. A novel rat model for liver cirrhosis was developed by CCL4/Urethane co-administration. Vitexin encapsulated liposomes were synthesized by the ‘thin-film hydration’ method. Polyethylene glycol (PEG) was coated on liposomes to enhance stability and stealth effect. The diseased rats were then treated with vitexin and PEGylated vitexin liposomes, administered intravenously and orally. Results ascertained the liposomal encapsulation of vitexin and subsequent PEG coating to be a substantial strategy for treating liver cirrhosis through oral drug delivery.  相似文献   
35.
Dye‐affinity adsorption is increasingly used for protein separation. Hollow‐fibres have advantages as adsorbents in comparison to conventional bead supports because they are not compressible and can eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of polyamide hollow‐fibres to which Reactive Green HE‐4BD was attached for adsorption of lysozyme. The hollow‐fibre was characterized by scanning electron microscopy. These dye‐carrying hollow‐fibres (26.3 µmol g?1) were used in the lysozyme adsorption–elution studies. The effect of initial concentration of lysozyme and medium pH on the adsorption efficiency of dye‐attached hollow‐fibres was studied in a batch system. The non‐specific adsorption of lysozyme on the polyamide hollow‐fibres was 1.8 mg g?1. Reactive Green HE‐4BD attachment significantly increased the lysozyme adsorption up to 41.1 mg g?1. Langmuir adsorption model was found to be applicable in interpreting lead adsorption by Reactive Green HE‐4BD attached hollow fibres. Significant amount of the adsorbed lysozyme (up to 95%) was eluted in 1 h in the elution medium containing 1.0 M NaSCN at pH 8.0. In order to determine the effects of adsorption conditions on possible conformational changes of lysozyme structure, fluorescence spectrophotometry was employed. We concluded that polyamide dye‐affinity hollow‐fibres can be applied for lysozyme adsorption without causing any significant conformational changes. Repeated adsorption–elution processes showed that these dye‐attached hollow‐fibres are suitable for lysozyme adsorption. © 2001 Society of Chemical Industry  相似文献   
36.
In this paper a novel method of producing yttrium aluminum silicate microspheres is reported. Yttrium aluminum silicate microspheres around 20–50 μm in size were obtained when an aqueous solution of Y(NO3)3 and Al(NO3)3 was added to tetraethyl orthosilicate (TEOS) and pumped into stirred silicone oil. The particles produced by this method are regularly shaped and very close to spherical. The amorphous structure, Y-O-Si bonds, spherical shapes, composition, and element distribution were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), carbon/sulfur analysis, and SEM/EDS mapping analysis. The results obtained demonstrate that the silicone oil spheroidization method is suitable for the production of yttrium aluminum silicate microspheres. This study also reveals that a high temperature is not required for the production of yttrium aluminum silicate microspheres.  相似文献   
37.
38.
Low density lipoprotein (LDL) cholesterol is a major ingredient of the plaque that collects in the coronary arteries and causes coronary heart diseases. Among the methods used for the extracorporeal elimination of LDL from intravasal volume, immunoaffinity technique using anti-LDL antibody as a ligand offers superior selectivity and specificity. Proper orientation of the immobilized antibody is the main issue in immunoaffinity techniques. In this study, anti-human β-lipoprotein antibody (anti-LDL antibody) molecules were immobilized and oriented through protein A onto poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel in order to remove LDL from hypercholesterolemic human plasma. PHEMA cryogel was prepared by free radical polymerization initiated with N,N,N′,N′-tetramethylene diamine (TEMED). PHEMA cryogel with a swelling degree of 8.89 g H2O/g and 67% macro-porosity was characterized by swelling studies, scanning electron microscope (SEM) and blood compatibility tests. All the clotting times were increased when compared with control plasma. The maximum immobilized anti-LDL antibody amount was 63.2 mg/g in the case of random antibody immobilization and 19.6 mg/g in the case of oriented antibody immobilization (protein A loading was 57.0 mg/g). Random and oriented anti-LDL antibody immobilized PHEMA cryogels adsorbed 111 and 129 mg LDL/g cryogel from hypercholesterolemic human plasma, respectively. Up to 80% of the adsorbed LDL was desorbed. The adsorption–desorption cycle was repeated 6 times using the same cryogel. There was no significant loss of LDL adsorption capacity.  相似文献   
39.
N-Methacryloyl-l-phenylalanine (MAPA) containing poly(2-hydroxyethylmethacrylate) based magnetic [mag-poly(HEMA–MAPA)] nanobeads was prepared for lysozyme purification form chicken egg white. MAPA was synthesized by reacting methacryloyl chloride with l-phenylalanine methyl ester and provided hydrophobic functionality to the nanobeads. Size of mag-poly(HEMA–MAPA) nanobeads was 386 nm and obtained by surfactant free emulsion polymerization of HEMA and MAPA having a specific surface area of 580 m2/g. Mag-poly(HEMA–MAPA) nanobeads were characterized by FTIR, AFM, TEM, ESR, and elemental analysis. Lysozyme adsorption experiments were investigated under different conditions in batch system (i.e., medium pH, protein concentration, temperature, salt type). Lysozyme adsorption capacity of mag-poly(HEMA) and mag-poly(HEMA–MAPA) nanobeads from aqueous solutions was estimated as 24 and 517 mg/g, respectively. Lysozyme molecules were desorbed with 50% ethylene glycol solution with 98% recovery. It was observed that mag-poly(HEMA–MAPA) nanobeads can be used without significant decrease in lysozyme adsorption capacity after ten adsorption–desorption cycles. Mag-poly(HEMA–MAPA) nanobeads was used for the purification of lysozyme from chicken egg white. Purity of lysozyme was estimated by SDS-PAGE.  相似文献   
40.
The purification of hyaluronic acid (HA) is relatively significant to use in biomedical applications. The structure of HA is formed by the repetitive units of glucuronic acid and N-acetyl glucosamine. In this study, glucuronic acid-imprinted microbeads have been supplied for the purification of HA from cell culture (Streptococcus equi). Histidine-functional monomer, methacryloylamidohistidine (MAH) was chosen as the metal-complexing monomer. The glucuronic acid-imprinted poly(ethyleneglycoldimethacrylate-MAH-Copper(II)) [p(EDMA-MAH-Cu2+)] microbeads have been synthesized by typical suspension polymerization procedure. The template glucuronic acid has been removed by employing 5 M methanolic KOH solution. p(EDMA-MAH-Cu2+) microbeads have been characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) images and swelling studies. Moreover, HA adsorption experiments have been performed in a batch experimental set-up. Purification of HA from cell culture supernatant has been also investigated by determining the hyaluronidase activity using purified HA as substrate. The glucuronic acid imprinted p(EDMA-MAH-Cu2+) particles can be used many times with no significant loss in adsorption capacities. Also, the selectivity of prepared molecular imprinted polymers (MIP) has been examined. Results have showed that MIP particles are 19 times more selective for glucuronic acid than N-acetylglucose amine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号