首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40786篇
  免费   13135篇
  国内免费   3篇
电工技术   754篇
综合类   3篇
化学工业   17360篇
金属工艺   347篇
机械仪表   729篇
建筑科学   1728篇
矿业工程   2篇
能源动力   886篇
轻工业   7518篇
水利工程   312篇
石油天然气   72篇
无线电   7009篇
一般工业技术   11790篇
冶金工业   839篇
原子能技术   22篇
自动化技术   4553篇
  2024年   8篇
  2023年   23篇
  2022年   59篇
  2021年   351篇
  2020年   2132篇
  2019年   3201篇
  2018年   3137篇
  2017年   3454篇
  2016年   3919篇
  2015年   3980篇
  2014年   3902篇
  2013年   5027篇
  2012年   2747篇
  2011年   2394篇
  2010年   2668篇
  2009年   2548篇
  2008年   2105篇
  2007年   1913篇
  2006年   1694篇
  2005年   1406篇
  2004年   1375篇
  2003年   1332篇
  2002年   1266篇
  2001年   1112篇
  2000年   1088篇
  1999年   486篇
  1998年   149篇
  1997年   108篇
  1996年   50篇
  1995年   46篇
  1994年   32篇
  1993年   29篇
  1992年   23篇
  1991年   29篇
  1990年   16篇
  1989年   11篇
  1988年   15篇
  1987年   12篇
  1986年   13篇
  1985年   8篇
  1984年   9篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1978年   4篇
  1977年   6篇
  1976年   13篇
  1975年   4篇
  1890年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water‐dispersible architectures of self‐assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self‐assemblies display increased cellular uptake by tumor cells compared to dispersions of the water‐soluble NC building blocks. Moreover, the self‐assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self‐assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.  相似文献   
72.
The use of nitrilotriacetic acid end‐functionalized polystyrenes (NTA‐PS) as a multifunctional nanocarrier for the aqueous dispersion of CdSe, γ‐Fe2O3 and gold nanoparticles (NPs) is described. When the amphiphilic end‐ functionalized polystyrenes and NPs are dissolved together in tetrahydrofuran, the addition of water causes the spontaneous formation of micellar aggregates, resulting in the successful encapsulation and aqueous dispersion of NPs. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, and vibrating sample magnetometer (VSM) are used to characterize the structure and properties of the NPs‐containing micellar aggregates (nanocarrier). After complexation of Ni2+ with NTA on the surface of the nanocarrier containing γ‐Fe2O3, specific binding between Ni‐NTA complex and histidine‐tagged (His‐tagged) proteins enables selective separation of His‐tagged proteins using a magnet.  相似文献   
73.
One of the biggest challenges for making dye‐sensitised solar cells (DSCs) on plastic substrates is the difficulty in making good quality nanoporous TiO2 films with both good mechanical stability and high electrical conductivity. Cold isostatic pressing (CIP) is a powder compaction technique that applies an isostatic pressure to a powder sample in all directions. It is particularly suitable for making thin films on plastic substrates, including non‐flat surfaces. Cold isostatically pressed nanocrystalline TiO2 electrodes with excellent mechanical robustness were prepared on indium tin oxide (ITO)‐coated polyethylene naphthalate (PEN) substrates in the absence of organic binders and without heat treatment. The morphology and the physical properties of the TiO2 films prepared by the CIP method were found to be very compatible with requirements for flexible DSCs on plastics. This room‐temperature processing technique has led to an important technical breakthrough in producing high efficiency flexible DSCs. Devices fabricated on ITO/PEN films by this method using standard P‐25 TiO2 films with a Ru‐complex sensitiser yielded a maximum incident photon‐to‐current conversion efficiency of 72% at the wavelength of 530 nm and showed high conversion efficiencies of 6.3% and 7.4% for incident light intensities of 100 and 15 mW cm−2, respectively, which are the highest power conversion efficiencies achieved so far for any DSC on a polymer substrate using the widely used, commercially available P‐25 TiO2 powder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
74.
75.
Theoretical studies of CO hydrogenation to methanol over Cu, Pd, and Pt metals have been carried out using a quasi‐relativistic density‐functional method. The metal surface is simulated by a M10 cluster model. Reaction energies for the elementary steps involved are determined. The activation energies are estimated by the analytic BOC‐MP formula. The results support that these metals are active in CO hydrogenation to methanol. The rate‐determining steps are shown to be different for the metals. The highest activation energies of reaction on the metals fall in the order Cu < Pd < Pt, which corresponds to the order of the catalytic activities of the metals in CO hydrogenation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
76.
The photo‐induced charge transfer and the dynamics of persistent charge carriers in blends of semiconducting polymers and nanocrystals are investigated. Regioregular poly(3‐hexylthiophene) (P3HT) is used as the electron donor material, while the acceptor moiety is established by CdSe nanocrystals (nc‐CdSe) prepared via colloidal synthesis. As a reference system, organic blends of P3HT and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) are studied as well. The light‐induced charge transfer between P3HT and the acceptor materials is studied by photoluminescence (PL), photo‐induced absorption (PIA) and light‐induced electron spin resonance spectroscopy (LESR). Compared to neat P3HT samples, both systems show an intensified formation of polarons in the polymer upon photo‐excitation, pointing out successful separation of photogenerated charge carriers. Additionally, relaxation of the persistent charge carriers is investigated, and significant differences are found between the hybrid composite and the purely organic system. While relaxation, reflected in the transient signal decay of the polaron signal, is fast in the organic system, the hybrid blends exhibit long‐term persistence. The appearance of a second, slow recombination channel indicates the existence of deep trap states in the hybrid system, which leads to the capture of a large fraction of charge carriers. A change of polymer conformation due to the presence of nc‐CdSe is revealed by low temperature LESR measurements and microwave saturation techniques. The impact of the different recombination behavior on the photovoltaic efficiency of both systems is discussed.  相似文献   
77.
Heating oilseeds has been shown to improve the milk fatty acid profile when given to dairy cows, compared to raw oilseeds. However, results from published studies are conflicting. The conditions of heating and storage of the oilseeds could be responsible for these differences, probably partly through their effects on lipid oxidation, the products of which could act on ruminal biohydrogenation (BH). Thus, 15 different treatments were applied to ground soybeans: three levels of heating (no heating, 30 min at 110 or 150°C) × 5 ambient storage durations (0, 1, 2, 4, or 6 months). Soybeans were incubated in vitro with ruminal fluid for 6 h. Triacylglycerol (TAG) polymers, hydroperoxides and hydroxyacids (HOA), aldehydes, and fatty acids were assayed in soybeans and ruminal culture. No TAG polymer was detected in any treatment. Soybeans stored for a long time had a high content of HOA, whereas those heated at 150°C, whatever the storage duration, had high aldehyde contents. The percentage disappearance of cis‐9,cis‐12 18:2 and cis‐9,cis‐12,cis‐15 18:3 in incubates decreased significantly in cultures with heated soybeans, especially at 150°C, suggesting that this partial protection of polyunsaturated fatty acids (PUFA) from BH was at least in part linked to the aldehyde content of the heated soybeans. Practical applications: Oilseeds given to ruminants are often heated, and heat treatment is known to generate oxidation products. Knowing what oxidation products influence ruminal biohydrogenation of unsaturated fatty acids could result in technological processes allowing a better transfer of unsaturated fatty acids from oilseeds to ruminant products.  相似文献   
78.
79.
80.
A series of 1‐arylsulfonyl‐5‐(N‐hydroxyacrylamide)indolines ( 7 – 15 ) has been developed; the compounds exhibited potent histone deacetylase (HDAC) inhibitory activities. Notably, almost all of this series exhibited better HDAC‐inhibitory and antiproliferative activities than 3‐(1‐benzenesulfonyl‐1H‐indol‐5‐yl)‐N‐hydroxyacrylamide ( 6 ), as reported in a previous study. Among these compounds, 3‐[1‐(4‐methoxybenzenesulfonyl)‐2,3‐dihydro‐1H‐indol‐5‐yl]‐N‐hydroxyacrylamide ( 9 ) showed a two‐ to tenfold increase in activity compared to SAHA ( 1 ) in the suppression of lipopolysaccharide‐induced cytokine production. Compound 9 also caused a marked reduction in carrageenan‐induced acute inflammation in a rat model. Taken together, these data indicated that 1‐arylsulfonyl‐5‐(N‐hydroxyacrylamide)indolines HDAC inhibitors exhibit potent anti‐inflammatory activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号