首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20630篇
  免费   1321篇
  国内免费   156篇
电工技术   408篇
综合类   78篇
化学工业   5020篇
金属工艺   496篇
机械仪表   662篇
建筑科学   746篇
矿业工程   28篇
能源动力   1424篇
轻工业   1969篇
水利工程   266篇
石油天然气   369篇
武器工业   8篇
无线电   2271篇
一般工业技术   3769篇
冶金工业   936篇
原子能技术   169篇
自动化技术   3488篇
  2024年   85篇
  2023年   430篇
  2022年   948篇
  2021年   1339篇
  2020年   1086篇
  2019年   1136篇
  2018年   1353篇
  2017年   1131篇
  2016年   1152篇
  2015年   694篇
  2014年   1090篇
  2013年   1920篇
  2012年   1266篇
  2011年   1368篇
  2010年   933篇
  2009年   825篇
  2008年   637篇
  2007年   558篇
  2006年   467篇
  2005年   338篇
  2004年   293篇
  2003年   248篇
  2002年   233篇
  2001年   151篇
  2000年   156篇
  1999年   157篇
  1998年   257篇
  1997年   220篇
  1996年   166篇
  1995年   144篇
  1994年   100篇
  1993年   107篇
  1992年   85篇
  1991年   61篇
  1990年   68篇
  1989年   74篇
  1988年   68篇
  1987年   50篇
  1986年   58篇
  1985年   67篇
  1984年   75篇
  1983年   65篇
  1982年   46篇
  1981年   40篇
  1980年   47篇
  1979年   39篇
  1978年   36篇
  1977年   39篇
  1976年   53篇
  1975年   27篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
This paper addresses the problem of approximating parameter dependent nonlinear systems in a unified framework. This modeling has been presented for the first time in the form of parameter dependent piecewise affine systems. In this model, the matrices and vectors defining piecewise affine systems are affine functions of parameters. Modeling of the system is done based on distinct spaces of state and parameter, and the operating regions are partitioned into the sections that we call ’multiplied simplices’. It is proven that this method of partitioning leads to less complexity of the approximated model compared with the few existing methods for modeling of parameter dependent nonlinear systems. It is also proven that the approximation is continuous for continuous functions and can be arbitrarily close to the original one. Next, the approximation error is calculated for a special class of parameter dependent nonlinear systems. For this class of systems, by solving an optimization problem, the operating regions can be partitioned into the minimum number of hyper-rectangles such that the modeling error does not exceed a specified value. This modeling method can be the first step towards analyzing the parameter dependent nonlinear systems with a uniform method.  相似文献   
152.

Combined simulation–optimization (CSO) schemes are common in the literature to solve different groundwater management problems, and CSO is particularly well-established in the coastal aquifer management literature. However, with a few exceptions, nearly all previous studies have employed the CSO approach to derive static groundwater management plans that remain unchanged during the entire management period, consequently overlooking the possible positive impacts of dynamic strategies. Dynamic strategies involve division of the planning time interval into several subintervals or periods, and adoption of revised decisions during each period based on the most recent knowledge of the groundwater system and its associated uncertainties. Problem structuring and computational challenges seem to be the main factors preventing the widespread implementation of dynamic strategies in groundwater applications. The objective of this study is to address these challenges by introducing a novel probabilistic Multiperiod CSO approach for dynamic groundwater management. This includes reformulation of the groundwater management problem so that it can be adapted to the multiperiod CSO approach, and subsequent employment of polynomial chaos expansion-based stochastic dynamic programming to obtain optimal dynamic strategies. The proposed approach is employed to provide sustainable solutions for a coastal aquifer storage and recovery facility in Oman, considering the effect of natural recharge uncertainty. It is revealed that the proposed dynamic approach results in an improved performance by taking advantage of system variations, allowing for increased groundwater abstraction, injection and hence monetary benefit compared to the commonly used static optimization approach.

  相似文献   
153.

The limitation of freshwater resources and the growing demand for water, make the issue of water resource development planning and water allocation among stakeholders even more important. Ideally, water allocation should be economically efficient and socially equitable. In this study, a water allocation model is presented in an integrated framework that considers the interaction of water supply and demand according to economic and social factors. To achieve this, a reliability-based multi-objective optimization - simulation approach has been employed. The objective functions of the problem are: 1) maximizing GDP from agricultural sectors and 2) maximizing social equality in different provinces of the basin (measured using the Williamson coefficient). The fair development and allocation among the shared provinces in the basin can reduce conflicts in the region. Karkheh basin has been considered as a case study and decision variables of the problem are area under cultivation of agricultural development sectors in different provinces. The results show that, without harming the income of the agricultural sector, the spatial distribution of development projects can be done in such a way that equality (according to income level and the number of people working in each province) is achieved. One of the solutions of Pareto front compared to previous studies shows that, in addition to an increase of about 12% of the objective function 1 (GDP), the value of the objective function 2 (Williamson coefficient) decreased from 1.19 to 0.98. This indicates a decrease in income inequality among the provinces of the basin.

  相似文献   
154.

Ultra-high-performance concrete (UHPC) is a recent class of concrete with improved durability, rheological and mechanical and durability properties compared to traditional concrete. The production cost of UHPC is considerably high due to a large amount of cement used, and also the high price of other required constituents such as quartz powder, silica fume, fibres and superplasticisers. To achieve specific requirements such as desired production cost, strength and flowability, the proportions of UHPC’s constituents must be well adjusted. The traditional mixture design of concrete requires cumbersome, costly and extensive experimental program. Therefore, mathematical optimisation, design of experiments (DOE) and statistical mixture design (SMD) methods have been used in recent years, particularly for meeting multiple objectives. In traditional methods, simple regression models such as multiple linear regression models are used as objective functions according to the requirements. Once the model is constructed, mathematical programming and simplex algorithms are usually used to find optimal solutions. However, a more flexible procedure enabling the use of high accuracy nonlinear models and defining different scenarios for multi-objective mixture design is required, particularly when it comes to data which are not well structured to fit simple regression models such as multiple linear regression. This paper aims to demonstrate a procedure integrating machine learning (ML) algorithms such as Artificial Neural Networks (ANNs) and Gaussian Process Regression (GPR) to develop high-accuracy models, and a metaheuristic optimisation algorithm called Particle Swarm Optimisation (PSO) algorithm for multi-objective mixture design and optimisation of UHPC reinforced with steel fibers. A reliable experimental dataset is used to develop the models and to justify the final results. The comparison of the obtained results with the experimental results validates the capability of the proposed procedure for multi-objective mixture design and optimisation of steel fiber reinforced UHPC. The proposed procedure not only reduces the efforts in the experimental design of UHPC but also leads to the optimal mixtures when the designer faces strength-flowability-cost paradoxes.

  相似文献   
155.

The paper proposes a novel metaheuristic based on integrating chaotic maps into a Henry gas solubility optimization algorithm (HGSO). The new algorithm is named chaotic Henry gas solubility optimization (CHGSO). The hybridization is aimed at enhancement of the convergence rate of the original Henry gas solubility optimizer for solving real-life engineering optimization problems. This hybridization provides a problem-independent optimization algorithm. The CHGSO performance is evaluated using various conventional constrained optimization problems, e.g., a welded beam problem and a cantilever beam problem. The performance of the CHGSO is investigated using both the manufacturing and diaphragm spring design problems taken from the automotive industry. The results obtained from using CHGSO for solving the various constrained test problems are compared with a number of established and newly invented metaheuristics, including an artificial bee colony algorithm, an ant colony algorithm, a cuckoo search algorithm, a salp swarm optimization algorithm, a grasshopper optimization algorithm, a mine blast algorithm, an ant lion optimizer, a gravitational search algorithm, a multi-verse optimizer, a Harris hawks optimization algorithm, and the original Henry gas solubility optimization algorithm. The results indicate that with selecting an appropriate chaotic map, the CHGSO is a robust optimization approach for obtaining the optimal variables in mechanical design and manufacturing optimization problems.

  相似文献   
156.
Engineering with Computers - In this paper, a recently developed meta-heuristic algorithm, shuffled shepherd optimization algorithm (SSOA), is employed for optimal design of reinforced concrete...  相似文献   
157.

Shear connectors play a prominent role in the design of steel-concrete composite systems. The behavior of shear connectors is generally determined through conducting push-out tests. However, these tests are costly and require plenty of time. As an alternative approach, soft computing (SC) can be used to eliminate the need for conducting push-out tests. This study aims to investigate the application of artificial intelligence (AI) techniques, as sub-branches of SC methods, in the behavior prediction of an innovative type of C-shaped shear connectors, called Tilted Angle Connectors. For this purpose, several push-out tests are conducted on these connectors and the required data for the AI models are collected. Then, an adaptive neuro-fuzzy inference system (ANFIS) is developed to identify the most influencing parameters on the shear strength of the tilted angle connectors. Totally, six different models are created based on the ANFIS results. Finally, AI techniques such as an artificial neural network (ANN), an extreme learning machine (ELM), and another ANFIS are employed to predict the shear strength of the connectors in each of the six models. The results of the paper show that slip is the most influential factor in the shear strength of tilted connectors and after that, the inclination angle is the most effective one. Moreover, it is deducted that considering only four parameters in the predictive models is enough to have a very accurate prediction. It is also demonstrated that ELM needs less time and it can reach slightly better performance indices than those of ANN and ANFIS.

  相似文献   
158.

An analytical answer to the buckling problem of a composite plate consisted of multi-scale hybrid nanocomposites is presented here for the first time. In other words, the constituent material of the structure is made of an epoxy matrix which is reinforced by both macro- and nanosize reinforcements, namely, carbon fiber (CF) and carbon nanotube (CNT). The effective material properties such as Young’s modulus or density are derived utilizing a micromechanical scheme incorporated with the Halpin–Tsai model. To present a more realistic problem, the plate is placed on a two-parameter elastic substrate. Then, on the basis of an energy-based Hamiltonian approach, the equations of motion are derived using the classical theory of plates. Finally, the governing equations are solved analytically to obtain the critical buckling load of the system. Afterward, the normalized form of the results is presented to emphasize the impact of each parameter on the dimensionless buckling load of composite plates. It is worth mentioning that the effects of various boundary conditions are covered, too. To show the efficiency of presented modeling, the results of this article are compared to those of former attempts.

  相似文献   
159.
Geologists interpret seismic data to understand subsurface properties and subsequently to locate underground hydrocarbon resources. Channels are among the most important geological features interpreters analyze to locate petroleum reservoirs. However, manual channel picking is both time consuming and tedious. Moreover, similar to any other process dependent on human intervention, manual channel picking is error prone and inconsistent. To address these issues, automatic channel detection is both necessary and important for efficient and accurate seismic interpretation. Modern systems make use of real-time image processing techniques for different tasks. Automatic channel detection is a combination of different mathematical methods in digital image processing that can identify streaks within the images called channels that are important to the oil companies. In this paper, we propose an innovative automatic channel detection algorithm based on machine learning techniques. The new algorithm can identify channels in seismic data/images fully automatically and tremendously increases the efficiency and accuracy of the interpretation process. The algorithm uses deep neural network to train the classifier with both the channel and non-channel patches. We provide a field data example to demonstrate the performance of the new algorithm. The training phase gave a maximum accuracy of 84.6% for the classifier and it performed even better in the testing phase, giving a maximum accuracy of 90%.  相似文献   
160.
The bivariate distributions are useful in simultaneous modeling of two random variables. These distributions provide a way to model models. The bivariate families of distributions are not much widely explored and in this article a new family of bivariate distributions is proposed. The new family will extend the univariate transmuted family of distributions and will be helpful in modeling complex joint phenomenon. Statistical properties of the new family of distributions are explored which include marginal and conditional distributions, conditional moments, product and ratio moments, bivariate reliability and bivariate hazard rate functions. The maximum likelihood estimation (MLE) for parameters of the family is also carried out. The proposed bivariate family of distributions is studied for the Weibull baseline distributions giving rise to bivariate transmuted Weibull (BTW) distribution. The new bivariate transmuted Weibull distribution is explored in detail. Statistical properties of the new BTW distribution are studied which include the marginal and conditional distributions, product, ratio and conditional momenst. The hazard rate function of the BTW distribution is obtained. Parameter estimation of the BTW distribution is also done. Finally, real data application of the BTW distribution is given. It is observed that the proposed BTW distribution is a suitable fit for the data used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号