首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   11篇
  国内免费   1篇
电工技术   2篇
化学工业   56篇
金属工艺   5篇
机械仪表   12篇
建筑科学   19篇
能源动力   16篇
轻工业   55篇
水利工程   1篇
石油天然气   4篇
无线电   31篇
一般工业技术   55篇
冶金工业   122篇
原子能技术   4篇
自动化技术   73篇
  2023年   2篇
  2021年   8篇
  2020年   4篇
  2019年   11篇
  2018年   5篇
  2017年   5篇
  2016年   9篇
  2015年   5篇
  2014年   10篇
  2013年   20篇
  2012年   23篇
  2011年   18篇
  2010年   13篇
  2009年   14篇
  2008年   15篇
  2007年   20篇
  2006年   16篇
  2005年   8篇
  2004年   17篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   22篇
  1997年   12篇
  1996年   16篇
  1995年   17篇
  1994年   16篇
  1993年   10篇
  1992年   6篇
  1991年   8篇
  1990年   5篇
  1989年   10篇
  1988年   7篇
  1987年   2篇
  1986年   5篇
  1985年   10篇
  1984年   9篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   7篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1972年   2篇
  1971年   2篇
排序方式: 共有455条查询结果,搜索用时 12 毫秒
451.
An aqueous formulation containing commercially available P25 nanoparticles and a water‐soluble precursor—titanium (IV) bis(ammonium lactato)dihydroxide (TALH) has been developed and optimized for fabricating photoanodes in dye‐sensitized solar cells. An optimal formulation achieved a power conversion efficiency of 9.2%. Solar cell performance is significantly influenced by precursor concentration impacting the porosity and electron transport of the thin film. The use of TALH during processing is shown to enhance the electron transport in the resulting titanium dioxide nanoparticle network using transient decay measurements. Bridging between neighboring nanoparticles is confirmed using transmission electron microscopy explaining the enhanced electron transport. The developed formulation has several advantages, as it is water‐based, composed of inexpensive, non‐hazardous components, is easy to make, and does not require special handling. The formulation has great potential for industrial applications, in particular for DSC manufacturing using roll‐to‐roll technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
452.
A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted in July 2000 at the Bachman Road site located in Oscoda, MI. The Bachman aquifer is a shallow, relatively homogeneous, unconfined aquifer formation composed primarily of sandy glacial outwash with relatively low organic carbon content (0.02 wt %). A 6 wt % aqueous solution of Tween 80 (a nonionic, food-grade surfactant) was flushed through a localized dense nonaqueous phase liquid (DNAPL) source zone to recover approximately 19 L of tetrachloroethene (PCE). Post-treatment monitoring revealed PCE concentrations were reduced by up to 2 orders of magnitude within the source zone, and there was no evidence of concentration rebound after more than 450 d. Concentrations of PCE dechlorination products (trichloroethene, cis-1,2-dichloroethene) 450 d after SEAR operations ceased were more than 2 orders of magnitude greater than pretreatment values, suggesting stimulation of native dechlorination activity. Post-treatment monitoring detected increased concentrations of volatile fatty acids generated from the fermentation of residual-level Tween 80 surfactant. These field data suggest that Tween 80 not only induced and maintained anaerobiosis but also provided reducing equivalents to reductively dechlorinating populations present in the oligotrophic Bachman aquifer. Experience from this site supports application of staged treatment strategies that couple SEAR and microbial reductive dechlorination to enhance mass removal and reduce contaminant mass flux emanating from treated source zones.  相似文献   
453.
Transformations accompanying shape-instability govern the morphological configuration and distribu-tion of the phases in a microstructure.Owing to the influence of the microstructure on the properties of a material,in the present work,the stability of three-dimensional rods in a'representative'polycrystalline system is extensively analysed.A multiphase-field model,which recovers the physical laws and sharp-interface relations,and includes grain boundary diffusion,is adopted to investigate the morphological evolution of the precipitate.Moreover,the efficiency of the numerical approach is ensured by establish-ing the volume-preserving chemical equilibrium through the incorporation TCFe8(CALPHAD)data and solving phase-field evolution in the Allen-Cahn framework.The morphological evolution of the rod in the representative multiphase system exhibits a unique transformation mechanism which is significantly different from the evolution of an isolated finite-structure.It is realised that,in a polycrystalline arrange-ment,irrespective of the initial size of the rod,the shape-change begins with the energy-minimising events at the triple junctions.This early transformation renders a characteristic morphology at the longi-tudinal ends of the structure,which introduces sufficient driving-force through the curvature-difference for the subsequent morphological changes.The continued mass transfer to the terminations,ultimately,breaks-off the rod into separate entities that are entangled in the grain boundary.With increase in the aspect ratio of the rod,it is identified that the source of mass transfer,which turns into the ovulation site,shifts from the centre.This increases the number of fragmentation events and introduces satellite particle.The size of the satellite particle is dictated by a definite ovulation criterion,which is ascertained by examining the transformation of different-sized rods.A comprehensive understanding of the trans-formation kinetics and mechanism governing the morphological evolution of the rods in a polycrystalline system is rendered in this work.  相似文献   
454.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are ω-3 very long-chain polyunsaturated fatty acids (VLC-PUFAs) that offer a wide range of human health benefits impacting cardiovascular, anti-inflammatory, and neurological health. It is widely known that humans inefficiently synthesize these compounds and as such rely on exogenous dietary sources, such as marine fish oils. Unfortunately, the production of marine fish oils is an unsustainable process and has suffered a dramatic fall in recent years due to overfishing and climate change, as the demand for EPA and DHA continues to rise. Therefore, there is an urgent need to develop alternative, sustainable sources for consumable EPA and DHA. Metabolic engineering of marine microalgae to improve their EPA and DHA productivity is regarded as a promising option that has received increasing commercial attention in recent years. In this mini-review, we describe several notable health benefits of EPA and DHA, summarize the natural sources and biosynthesis of VLC-PUFAS, as well as the recent advances in metabolic engineering of EPA and DHA production in representative microalgal and protist species, including Schizochytrium sp., Phaeodactylum tricornutum, and Nannochloropsis oceanica.  相似文献   
455.
The disruption of thyroid hormones because of chemical exposure is a significant societal problem. Chemical evaluations of environmental and human health risks are conventionally based on animal experiments. However, owing to recent breakthroughs in biotechnology, the potential toxicity of chemicals can now be evaluated using 3D cell cultures. In this study, the interactive effects of thyroid-friendly soft (TS) microspheres on thyroid cell aggregates are elucidated and their potential as a reliable toxicity assessment tool is evaluated. Using state-of-the-art characterization methods coupled with cell-based analysis and quadrupole time-of-flight mass spectrometry, it is shown that TS-microsphere-integrated thyroid cell aggregates exhibit improved thyroid function. Specifically, the responses of zebrafish embryos, which are used for thyroid toxicity analysis, and the TS-microsphere-integrated cell aggregates to methimazole (MMI), a known thyroid inhibitor, are compared. The results show that the thyroid hormone disruption response of the TS-microsphere-integrated thyroid cell aggregates to MMI is more sensitive compared with those of the zebrafish embryos and conventionally formed cell aggregates. This proof-of-concept approach can be used to control cellular function in the desired direction and hence evaluate thyroid function. Thus, the proposed TS-microsphere-integrated cell aggregates may yield new fundamental insights for advancing in vitro cell-based research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号