首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39206篇
  免费   2804篇
  国内免费   61篇
电工技术   245篇
综合类   124篇
化学工业   9659篇
金属工艺   709篇
机械仪表   814篇
建筑科学   1256篇
矿业工程   91篇
能源动力   1052篇
轻工业   8412篇
水利工程   396篇
石油天然气   263篇
武器工业   2篇
无线电   1648篇
一般工业技术   5925篇
冶金工业   6130篇
原子能技术   160篇
自动化技术   5185篇
  2024年   70篇
  2023年   367篇
  2022年   849篇
  2021年   1558篇
  2020年   1029篇
  2019年   1128篇
  2018年   1593篇
  2017年   1576篇
  2016年   1669篇
  2015年   1232篇
  2014年   1666篇
  2013年   3185篇
  2012年   2646篇
  2011年   2642篇
  2010年   2092篇
  2009年   1908篇
  2008年   1751篇
  2007年   1536篇
  2006年   1151篇
  2005年   953篇
  2004年   844篇
  2003年   830篇
  2002年   658篇
  2001年   527篇
  2000年   437篇
  1999年   488篇
  1998年   2175篇
  1997年   1405篇
  1996年   907篇
  1995年   506篇
  1994年   411篇
  1993年   397篇
  1992年   152篇
  1991年   112篇
  1990年   89篇
  1989年   106篇
  1988年   117篇
  1987年   111篇
  1986年   81篇
  1985年   99篇
  1984年   88篇
  1983年   55篇
  1982年   55篇
  1981年   78篇
  1980年   81篇
  1978年   44篇
  1977年   123篇
  1976年   234篇
  1975年   38篇
  1973年   46篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
61.
Abstract

Relative populations of four energy-lowest IPR (isolated-pentagon-rule) isomers of Eu@C86 are computed using the Gibbs energy based on characteristics from density functional theory calculations (M06-2X/3-21G?~?SDD entropy term, M06-2X/6-31G*~SDD or B2PLYP(D)/6-31G*~SDD energetics). The calculations confirm that the recently isolated Eu@C1(7)-C86 species is a major isomer in a relevant temperature region. Relationship to the empty C86 cages is discussed, too.  相似文献   
62.
The central nervous system (CNS) is the most complex structure in the body, consisting of multiple cell types with distinct morphology and function. Development of the neuronal circuit and its function rely on a continuous crosstalk between neurons and non-neural cells. It has been widely accepted that extracellular vesicles (EVs), mainly exosomes, are effective entities responsible for intercellular CNS communication. They contain membrane and cytoplasmic proteins, lipids, non-coding RNAs, microRNAs and mRNAs. Their cargo modulates gene and protein expression in recipient cells. Several lines of evidence indicate that EVs play a role in modifying signal transduction with subsequent physiological changes in neurogenesis, gliogenesis, synaptogenesis and network circuit formation and activity, as well as synaptic pruning and myelination. Several studies demonstrate that neural and non-neural EVs play an important role in physiological and pathological neurodevelopment. The present review discusses the role of EVs in various neurodevelopmental disorders and the prospects of using EVs as disease biomarkers and therapeutics.  相似文献   
63.
The complex tissue-specific physiology that is orchestrated from the nano- to the macroscale, in conjugation with the dynamic biophysical/biochemical stimuli underlying biological processes, has inspired the design of sophisticated hydrogels and nanoparticle systems exhibiting stimuli-responsive features. Recently, hydrogels and nanoparticles have been combined in advanced nanocomposite hybrid platforms expanding their range of biomedical applications. The ease and flexibility of attaining modular nanocomposite hydrogel constructs by selecting different classes of nanomaterials/hydrogels, or tuning nanoparticle-hydrogel physicochemical interactions widely expands the range of attainable properties to levels beyond those of traditional platforms. This review showcases the intrinsic ability of hybrid constructs to react to external or internal/physiological stimuli in the scope of developing sophisticated and intelligent systems with application-oriented features. Moreover, nanoparticle-hydrogel platforms are overviewed in the context of encoding stimuli-responsive cascades that recapitulate signaling interplays present in native biosystems. Collectively, recent breakthroughs in the design of stimuli-responsive nanocomposite hydrogels improve their potential for operating as advanced systems in different biomedical applications that benefit from tailored single or multi-responsiveness.  相似文献   
64.
65.
Carriers for targeted delivery and controlled release of poorly water-soluble active substances (PWSAS) are facing three challenges: (a) the encapsulation issues, (b) limitations of PWSAS water solubility, and (c) burst drug release which can be pharmacologically dangerous and economically inefficient. The present study brings a novel strategy for encapsulation and controlled release of PWSAS—caffeine in concentrations which are higher than its maximal water solubility without the possibility of burst effect. The modification of hydrophilic carrier based on poly(methacylic acid) was done using casein and liposomes. To further increase the maximal caffeine loading inside the carrier nicotinamide was used. The release study of the encapsulated PWSAS was elaborated with respect to morphology of the carriers and interactions that could be established between its structural components. The carriers swelling and the release of caffeine and nicotinamide were also investigated depending on caffeine concentration, the presence of different liposomal formulations and the volume ratio of liposomal formulation, in three media with different pH simulating the path of the carrier through the human gastrointestinal tract. The synthesized carriers are promising candidates for encapsulation of PWSAS in concentrations which are higher than its maximal water solubility and for the targeted delivery of those dosages.  相似文献   
66.
Lipases are hydrolytic enzymes that break the ester bonds of triglycerides, generating free fatty acids and glycerol. Extracellular lipase activity has been reported for the nonconventional yeast Kluyveromyces marxianus, grown in olive oil as a substrate, and the presence of at least eight putative lipases has been detected in its genome. However, to date, there is no experimental evidence on the physiological role of the putative lipases nor their structural and catalytic properties. In this study, a bioinformatic analysis of the genes of the putative lipases from K. marxianus L-2029 was performed, particularly identifying and characterizing the extracellular expected enzymes, due to their biotechnological relevance. The amino acid sequence of 10 putative lipases, obtained by in silico translation, ranged between 389 and 773 amino acids. Two of the analysed putative proteins showed a signal peptide, 25 and 33 amino acids long for KmYJR107Wp and KmLIP3p, and a molecular weight of 44.53 and 58.23 kDa, respectively. The amino acid alignment of KmLIP3p and KmYJR107Wp with the crystallized lipases from a patatin and the YlLip2 lipase from Yarrowia lipolytica, respectively, revealed the presence of the hydrolase characteristic motifs. From the 3D models of putative extracellular K. marxianus L-2029 lipases, the conserved pentapeptide of each was determined, being GTSMG for KmLIP3p and GHSLG for KmYJR107Wp; besides, the genes of these two enzymes (LIP3 and YJR107W) are apparently regulated by oleate response elements. The phylogenetic analysis of all K. marxianus lipases revealed evolutionary affinities with lipases from abH15.03, abH23.01, and abH23.02 families.  相似文献   
67.
68.
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism – yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.  相似文献   
69.
Doped CeGdO and codoped CeGdOSmO compositions were synthesized, giving rise to nanoparticulate powders. Ionic conductivities at bulk and grain boundaries of the sintered samples were determined, exhibiting increased conductivity in the samaria-codoped samples. Scanning electron microscopy (SEM) showed a significant reduction in the grain size of samaria-codoped electrolytes. This reduced grain size of the codoped samples caused a reduction in Schottky barrier height, increasing oxygen vacancy concentration in the space-charge layer of the grain boundary and culminating in greater ionic conductivity in the boundary region. For the gadolinium doped samples, high resolution transmission electron microscopy images at grains showed the presence of large cluster of defects (nanodomains), hindering the movement of charge carriers and reducing ionic conductivity. However, the samaria-codoped system displayed better homogeneity at atomic level, resulting in reduced oxygen vacancy ordering and, consequently, smaller nanodomains and higher bulk (grain) conductivity. The reduced grain sizes and smaller nanodomains caused by codoping favor the ionic conductivity of ceria-based ceramics, doped with gadolinia and codoped with samaria.  相似文献   
70.
Vivianite, a blue pigment employed in the past practically only in Northern and Central Europe, but with very limited use, was identified in an early sixteenth century painting, stylistically with Flemish features, from a church in Portugal. The identification of this iron phosphate mineral was made by SEM‐EDS based on the atomic ratio between phosphorus and iron in layers of blue paint (area analysis) and in particles of these same layers (spot analysis). This painting, about which there is no document to prove its authorship, becomes the first case, known in detail, of a sixteenth century painting containing vivianite. Moreover, this find and the presence of a chalk ground, also identified, strongly support the hypothesis of being a Flemish painting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号