首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2271篇
  免费   77篇
  国内免费   2篇
电工技术   44篇
综合类   2篇
化学工业   489篇
金属工艺   47篇
机械仪表   54篇
建筑科学   101篇
矿业工程   3篇
能源动力   93篇
轻工业   236篇
水利工程   11篇
石油天然气   3篇
无线电   97篇
一般工业技术   404篇
冶金工业   401篇
原子能技术   26篇
自动化技术   339篇
  2023年   10篇
  2022年   18篇
  2021年   29篇
  2020年   27篇
  2019年   38篇
  2018年   41篇
  2017年   41篇
  2016年   55篇
  2015年   37篇
  2014年   76篇
  2013年   137篇
  2012年   103篇
  2011年   162篇
  2010年   86篇
  2009年   99篇
  2008年   112篇
  2007年   109篇
  2006年   106篇
  2005年   96篇
  2004年   76篇
  2003年   82篇
  2002年   46篇
  2001年   53篇
  2000年   46篇
  1999年   37篇
  1998年   114篇
  1997年   76篇
  1996年   55篇
  1995年   32篇
  1994年   24篇
  1993年   39篇
  1992年   15篇
  1991年   20篇
  1990年   18篇
  1989年   18篇
  1988年   18篇
  1987年   18篇
  1986年   10篇
  1985年   14篇
  1984年   14篇
  1983年   15篇
  1982年   14篇
  1981年   12篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   11篇
  1976年   30篇
  1975年   6篇
  1971年   5篇
排序方式: 共有2350条查询结果,搜索用时 15 毫秒
41.
A series of placebo powders for inhalation was characterized regarding bulk density and powder flowability using different techniques. The powders were of the ordered mixture type and were prepared by mixing a pharmaceutical carrier grade of lactose with different fractions of intermediate sized and fine (i.e., micronized) lactose. A modified Hausner Ratio was obtained by measurement of the poured and the compressed bulk densities. Other tests investigated were the angle of repose, the avalanching behaviour using the AeroFlow, and the yield strength using the Uniaxial tester. Furthermore, the relation between ordered mixture composition and flowability was examined.Of the methods investigated, the modified Hausner Ratio discriminates well between the investigated powders and seems to have the widest measuring range. It was also found that the poured and compressed bulk densities provide information about the packing of the particles in the powders. A good correlation was obtained between the modified Hausner Ratio and the angle of repose. The AeroFlow was suitable for powders with a low percentage of fine particles, but could not discriminate between the more cohesive powders. The Uniaxial tester, on the other hand, seems to be better suited for more cohesive powders.Regarding the powder composition, addition of micronized particles has a strong influence on the flowability of ordered mixtures, while intermediate sized particles have little impact on the powder flow.  相似文献   
42.
A single-stage “wet impactor” is presented, where the impaction occurs on a regenerated water surface. The developed impactor is equipped with an impaction liquid support plate of etched glass and a drain spout providing a continuous liquid flow covering the impaction area. Subsequent transport of the impaction liquid makes an on-line determination possible. With multiple nozzles (74 holes, 0.3 mm i.d.) and an air flow of 101/min the cut-off was determined to 0.41 ± 0.02 μm. The impactor was also investigated for its particle loss. The cut-off function, regarding the consequences of letting impaction occur in a liquid film is discussed and compared to conventional impactors. The analysis technique was tested in an ambient air measurement study with an ion chromatograph attached to the sampling system.  相似文献   
43.
44.
Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.  相似文献   
45.
46.
Surgical therapy has become an important therapeutic alternative for patients with medically intractable epilepsy. Correct and anatomically precise localization of an epileptic focus is essential to decide if resection of brain tissue is possible. The inverse problem in EEG-based source localization is to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes. We propose a new global optimization method based on particle swarm optimization (PSO) to solve the epileptic spike EEG source localization inverse problem. In a forward problem a modified subtraction method is proposed to reduce the computational time. The good accuracy and fast convergence are demonstrated for 2D and 3D cases with realistic head models. The results from the new method are promising for use in the pre-surgical clinic in the future.  相似文献   
47.
The profile of a graph is an integer-valued parameter defined via vertex orderings; it is known that the profile of a graph equals the smallest number of edges of an interval supergraph. Since computing the profile of a graph is an NP-hard problem, we consider parameterized versions of the problem. Namely, we study the problem of deciding whether the profile of a connected graph of order n is at most n−1+k, considering k as the parameter; this is a parameterization above guaranteed value, since n−1 is a tight lower bound for the profile. We present two fixed-parameter algorithms for this problem. The first algorithm is based on a forbidden subgraph characterization of interval graphs. The second algorithm is based on two simple kernelization rules which allow us to produce a kernel with linear number of vertices and edges. For showing the correctness of the second algorithm we need to establish structural properties of graphs with small profile which are of independent interest. A preliminary version of the paper is published in Proc. IWPEC 2006, LNCS vol. 4169, 60–71.  相似文献   
48.
In this paper we address the problem of segmentation in image sequences using region-based active contours and level set methods. We propose a novel method for variational segmentation of image sequences containing nonrigid, moving objects. The method is based on the classical Chan-Vese model augmented with a novel frame-to-frame interaction term, which allow us to update the segmentation result from one image frame to the next using the previous segmentation result as a shape prior. The interaction term is constructed to be pose-invariant and to allow moderate deformations in shape. It is expected to handle the appearance of occlusions which otherwise can make segmentation fail. The performance of the model is illustrated with experiments on synthetic and real image sequences.  相似文献   
49.
Most state-of-the-art approaches for Satisfiability Modulo Theories $(SMT(\mathcal{T}))$ rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory $\mathcal{T} (\mathcal{T}{\text {-}}solver)$ . Often $\mathcal{T}$ is the combination $\mathcal{T}_1 \cup \mathcal{T}_2$ of two (or more) simpler theories $(SMT(\mathcal{T}_1 \cup \mathcal{T}_2))$ , s.t. the specific ${\mathcal{T}_i}{\text {-}}solvers$ must be combined. Up to a few years ago, the standard approach to $SMT(\mathcal{T}_1 \cup \mathcal{T}_2)$ was to integrate the SAT solver with one combined $\mathcal{T}_1 \cup \mathcal{T}_2{\text {-}}solver$ , obtained from two distinct ${\mathcal{T}_i}{\text {-}}solvers$ by means of evolutions of Nelson and Oppen’s (NO) combination procedure, in which the ${\mathcal{T}_i}{\text {-}}solvers$ deduce and exchange interface equalities. Nowadays many state-of-the-art SMT solvers use evolutions of a more recent $SMT(\mathcal{T}_1 \cup \mathcal{T}_2)$ procedure called Delayed Theory Combination (DTC), in which each ${\mathcal{T}_i}{\text {-}}solver$ interacts directly and only with the SAT solver, in such a way that part or all of the (possibly very expensive) reasoning effort on interface equalities is delegated to the SAT solver itself. In this paper we present a comparative analysis of DTC vs. NO for $SMT(\mathcal{T}_1 \cup \mathcal{T}_2)$ . On the one hand, we explain the advantages of DTC in exploiting the power of modern SAT solvers to reduce the search. On the other hand, we show that the extra amount of Boolean search required to the SAT solver can be controlled. In fact, we prove two novel theoretical results, for both convex and non-convex theories and for different deduction capabilities of the ${\mathcal{T}_i}{\text {-}}solvers$ , which relate the amount of extra Boolean search required to the SAT solver by DTC with the number of deductions and case-splits required to the ${\mathcal{T}_i}{\text {-}}solvers$ by NO in order to perform the same tasks: (i) under the same hypotheses of deduction capabilities of the ${\mathcal{T}_i}{\text {-}}solvers$ required by NO, DTC causes no extra Boolean search; (ii) using ${\mathcal{T}_i}{\text {-}}solvers$ with limited or no deduction capabilities, the extra Boolean search required can be reduced down to a negligible amount by controlling the quality of the $\mathcal{T}$ -conflict sets returned by the ${\mathcal{T}_i}{\text {-}}solvers$ .  相似文献   
50.
We consider an underactuated two‐link robot called the inertia wheel pendulum. The system consists of a free planar rotational pendulum and a symmetric disk attached to its end, which is directly controlled by a DC‐motor. The goal is to create stable oscillations of the pendulum, which is not directly actuated. We exploit a recently proposed feedback‐control design strategy based on motion planning via virtual holonomic constraints. This strategy is shown to be useful for design of regulators for achieving orbitally exponentially stable oscillatory motions. The main contribution is a step‐by‐step procedure on how to achieve oscillations with pre‐specified amplitude from a given range and an arbitrary independently chosen period. The theoretical results are verified via experiments with a real hardware setup. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号