首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   49篇
  国内免费   4篇
电工技术   11篇
综合类   2篇
化学工业   220篇
金属工艺   21篇
机械仪表   23篇
建筑科学   43篇
矿业工程   7篇
能源动力   32篇
轻工业   83篇
水利工程   10篇
石油天然气   5篇
无线电   96篇
一般工业技术   169篇
冶金工业   65篇
原子能技术   5篇
自动化技术   118篇
  2024年   3篇
  2023年   9篇
  2022年   22篇
  2021年   27篇
  2020年   26篇
  2019年   24篇
  2018年   28篇
  2017年   31篇
  2016年   29篇
  2015年   31篇
  2014年   32篇
  2013年   66篇
  2012年   47篇
  2011年   67篇
  2010年   40篇
  2009年   37篇
  2008年   35篇
  2007年   39篇
  2006年   34篇
  2005年   23篇
  2004年   13篇
  2003年   24篇
  2002年   17篇
  2001年   13篇
  2000年   7篇
  1999年   15篇
  1998年   17篇
  1997年   17篇
  1996年   10篇
  1995年   9篇
  1994年   10篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   10篇
  1986年   3篇
  1985年   6篇
  1983年   4篇
  1982年   4篇
  1980年   4篇
  1979年   5篇
  1976年   6篇
  1973年   4篇
  1972年   5篇
  1970年   2篇
  1968年   2篇
  1966年   2篇
排序方式: 共有910条查询结果,搜索用时 15 毫秒
81.
82.
83.
3D x-ray tomography is a powerful scanning technique used for generating images of complex fibre structures. A novel machine-learning algorithm to identify and separate individual fibres using 3D images is proposed in this article. The developed four-step hybrid 3D fibre segmentation algorithm involves deep-learning aided semantic segmentation that slices 3D images to create 2D images for fibre extraction, elliptical contour estimation combined with the marker-controlled watershed algorithm for separating fibres from the background area, identifying individual fibres through 3D reconstruction, and, lastly, the 3D object refining approach based on outlier object detection and replacement. The proposed methodology is implemented on a real-time sample of nylon fibre bundle under compression and its 3D x-ray image volume to validate the performance. The results show its superior performance compared to off-the-shelf image processing algorithms in terms of precision, that is, with a validation accuracy greater than 90%, and efficiency, that is, preventing the need for a huge data set and reducing the complexity.  相似文献   
84.
This paper presents a study of friction stir welding of aluminium and copper using experimental work and theoretical modelling. The 5083-H116 aluminium alloy and pure copper were successfully friction-stir-welded by offsetting the pin to the aluminium side and controlling the FSW parameters. A theoretical analysis is presented along with key findings. The process temperatures are predicted analytically using the inverse heat transfer method and correlated with experimental measurements. The temperature distribution in the immediate surroundings of the weld zone is investigated together with the microstructures and mechanical properties of the joint. This was supported by a finite element analysis using COMSOL Multiphysics. In this study, two rotational speeds were used and a range of offsets was applied to the pin. The microstructure analysis of the joints was undertaken. This revealed some particles of Cu inclusion in the nugget zone. The energy dispersive spectroscopy showed a higher diffusion rate of aluminium towards the interface while copper maintained a straight base line.  相似文献   
85.
Encapsulation of hydrophobic plant essential oil components (EOC) into surfactant micelles can assist the decontamination of fresh produce surfaces from bacterial pathogens during postharvest washing. Loading of eugenol and carvacrol into surfactant micelles of polysorbate 20 (Tween 20), Surfynol® 485W, sodium dodecyl sulfate (SDS), and CytoGuard® LA 20 (CG20) was determined by identification of the EOC/surfactant‐specific maximum additive concentration (MAC). Rheological behavior of dilute EOC‐containing micelles was then tested to determine micelle tolerance to shearing. Antimicrobial efficacy of EOC micelles against Escherichia coli O157:H7 and Salmonella enterica serotype Saintpaul was first evaluated by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Pathogen‐inoculated spinach was treated with eugenol‐containing micelles applied via spraying or immersion methods. SDS micelles produced the highest MACs for EOCs, while Tween 20 loaded the lowest amount of EOCs. Micelles demonstrated Newtonian behavior in response to shearing. SDS and CG20‐derived micelles containing EOCs produced the lowest MICs and MBCs for pathogens. E. coli O157:H7 and S. Saintpaul were reduced on spinach surfaces by application of eugenol micelles, though no differences in numbers of surviving pathogens were observed when methods of antimicrobial micelle application (spraying, immersion) was compared (P ≥ 0.05). Data suggest eugenol in SDS and CG20 micelles may be useful for produce surface decontamination from bacterial pathogens during postharvest washing.  相似文献   
86.

Mine drainage from the St Louis Tunnel (located at the Rico-Argentine Site) is circumneutral most of the year, with spring freshets increasing flow, decreasing pH and increasing metals concentrations. This study was designed to test the performance of a demonstration-scale horizontal wetlands passive treatment train, comprised of a settling basin, surface flow wetland, horizontal-flow anaerobic wetland, aeration channel, and rock drain, during two years of influent water chemistry at a constant 113 L/min (30 gpm) flow rate. Total Zn, Cd, and Mn effluent concentrations met project treatment goals (PTGs) 75, 96.9, and 100% of the time, respectively, and 93.9, 100, and 100% of the time for the dissolved metals. Most PTG exceedances occurred during the freshet events. Most Zn and Cd attenuation was attributed to sulfide precipitation in the anaerobic cell and capture/filtration of suspended ZnS particles in the anaerobic wetland and rock drain. Manganese was attenuated in the aerobic portion of the anaerobic cell (influent transition zone) as Mn oxides and carbonates. Oxidation of Mn occurred in the rock drain as biogenically formed Mn oxides adhered to the rock matrix. Carryover of dissolved sulfides from the anaerobic cell limited the rock drain’s Mn removal efficiency. Low temperatures did not significantly affect biological activity within the system; the effects of seasonal water quality were more important.

  相似文献   
87.
Piezoelectricity is a well‐established property of biological materials, yet its functional role has remained unclear. Here, a mechanical effect of piezoelectric domains resulting from collagen fibril organisation is demonstrated, and its role in tissue function and application to material design is described. Using a combination of scanning probe and nonlinear optical microscopy, a hierarchical structuring of piezoelectric domains in collagen‐rich tissues is observed, and their mechanical effects are explored in silico. Local electrostatic attraction and repulsion due to shear piezoelectricity in these domains modulate fibril interactions from the tens of nanometre (single fibril interactions) to the tens of micron (fibre interactions) level, analogous to modulated friction effects. The manipulation of domain size and organisation thus provides a capacity to tune energy storage, dissipation, stiffness, and damage resistance.  相似文献   
88.
In this study we used multidimensional solution-state NMR to elucidate the differences in the chemical composition of solid phase extracted and ultrafiltered DOM isolates. DOM was isolated from water sampled from an oligotrophic river, the River Tagliamento (Italy). The recovery of total DOM was up to 42% with both isolation techniques. In addition to 1- and 2-D solution-state NMR, we also applied 1-D solid-state 13C NMR spectroscopy for DOM characterization. 13C NMR spectroscopy only produced broad overlapping resonances, thus allowing a bulk characterization of DOM composition. However, it demonstrated that the bulk chemical composition of the two DOM fractions exhibited minor spatial-temporal changes. The 2-D experiments (TOCSY, HMQC) showed that the solid phase extracted hydrophobic DOM contained predominantly aliphatic esters, ethers, and hydroxyl groups, whereas the ultrafiltered DOM was comprised partially of peptides/protein, with further evidence for a small amount of aliphatic/fatty acid material. Sugars were present in both DOM fractions. The results show the two isolation techniques selected for different suites of compounds within the bulk DOM pool.  相似文献   
89.
Herein, we describe a reduced‐scale test (“Cube” test), measuring the fire performance of specimens including a fire barrier (FB) and a flammable core material, which acts as the main fuel load. The specimen is intended to reproduce a cross‐section of a composite product where heat/mass transfer occurs primarily in a direction perpendicular to the FB. The Cube test procedure and benefits are discussed in this work by adopting residential upholstery furniture as an exemplary study. One flexible polyurethane foam, one polypropylene cover fabric, and 10 commercially available FBs were selected. They were used to compare the fire performance of FBs, measured in terms of peak of heat release rate, in the ASTM E1474‐14 standard test and the newly developed Cube test. Edge effects severely affected the performance of FBs in the ASTM E1474‐14 standard test but not in the Cube test. Furthermore, appropriate test conditions were determined in the Cube test to measure the so‐called “wetting point,” that is, the time and value of heat release rate measured when flammable liquid products were first observed on the bottom of the specimen. The relevance of the “wetting point” in terms of full‐scale fire performance and failure mechanism of FBs is discussed.  相似文献   
90.
In this work it is assessed the potential of combining conventional and incremental sheet forming processes in a same sheet of metal.This so-called hybrid forming approach is performed through the manufacture of a pre-forming by conventional forming,followed by incremental sheet forming.The main objective is analyzing strain evolution.The pre-forming induced in the conventional forming stage will determine the strain paths,directly influencing the strains produced by the incremental process.To conduct the study,in the conventional processes,strains were imposed in three different ways with distinct true strains.At the incremental stage,the pyramid strategy was adopted with differ-ent wall slopes.From the experiments,the true strains and the final geometries were analyzed.Numerical simulation was also employed for the sake of comparison and correlation with the measured data.It could be observed that single-stretch pre-strain was directly proportional to the maximum incremental strains achieved,whereas samples subjected to biaxial pre-strain influenced the formability according to the degree of pre-strain applied.Pre-strain driven by the prior deep-drawing operation did not result,in this particular geometry,in increased formability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号