首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   8篇
电工技术   2篇
综合类   3篇
化学工业   98篇
金属工艺   3篇
机械仪表   2篇
建筑科学   20篇
能源动力   10篇
轻工业   78篇
水利工程   2篇
无线电   9篇
一般工业技术   44篇
冶金工业   11篇
自动化技术   45篇
  2023年   4篇
  2022年   22篇
  2021年   17篇
  2020年   8篇
  2019年   5篇
  2018年   8篇
  2017年   3篇
  2016年   3篇
  2015年   9篇
  2014年   17篇
  2013年   15篇
  2012年   13篇
  2011年   20篇
  2010年   17篇
  2009年   17篇
  2008年   19篇
  2007年   15篇
  2006年   11篇
  2005年   7篇
  2004年   12篇
  2003年   4篇
  2002年   7篇
  2001年   9篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1973年   5篇
排序方式: 共有327条查询结果,搜索用时 0 毫秒
101.
102.
Toxin-producing cyanobacterial species are increasingly being found in freshwater systems. However, literature on the impact of many cyanobacterial toxins on plants is scarce. Cylindrospermosin (CYN), a secondary metabolite of cyanobacteria such as Cylindrospermopsis and Aphanizomenon species, is a potent hepatotoxin and protein synthesis inhibitor. Worryingly, CYN is increasingly found in surface and drinking water worldwide causing human and animal intoxications. Further, exposure of crop plants to CYN by irrigation with contaminated water has already been shown. Therefore, in this study, horticulturally important and highly consumed Brassica species were investigated to determine the level of CYN in the leaves after exposure of the roots to the toxin. Treatment of Brassica oleracea var. sabellica, Brassica juncea, and Sinapis alba under varying experimental conditions showed significant CYN uptake, with CYN levels ranging from 10% to 21% in the leaves compared to the CYN concentration applied to the roots (18–35 μg/l). In seedlings, CYN concentrations of up to 49 μg/g fresh weight were observed. Thus, crop plants irrigated with CYN-containing water may represent a significant source of this toxin within the food chain.  相似文献   
103.
104.
Super connectivity of line graphs   总被引:1,自引:0,他引:1  
The super connectivity κ and the super edge-connectivity λ are more refined network reliability indices than connectivity κ and edge-connectivity λ. This paper shows that for a connected graph G with order at least four rather than a star and its line graph L(G), κ(L(G))=λ(G) if and only if G is not super-λ. As a consequence, we obtain the result of Hellwig et al. [Note on the connectivity of line graphs, Inform. Process. Lett. 91 (2004) 7] that κ(L(G))=λ(G). Furthermore, the authors show that the line graph of a super-λ graph is super-λ if the minimum degree is at least three.  相似文献   
105.
Pollution preventive measures should be built into the process when a new mill is designed; corrective measures must be taken on existing mills. For air pollution control, these measures consist essentially of enclosing all vessels that contain the black liquor from which the tall oil is recovered. Hoods are placed over storage tanks, sumps, heat exchangers, and other liquor-containing vessels. The hoods must be vented to a ductwork system that brings the off-gases to a central point for disposition. Typical devices to remove the offensive odors and particulate matter in the off-gases are wet scrubbers and incinerators. Evaporation can be used to concentrate liquids containing small amounts of contaminants to much smaller volumes and to concentrations that permit incineration. The lime kiln and recovery boiler of the typical Kraft mill commonly are used to burn the odorous gases, thus destroying the odors completely. Sometimes a separate incinerator is required. Water pollution is best prevented by careful design and operation of the various tall oil removal equipment, such as soap skimmers, level controls, and valving systems. In spite of great care in design and operation, some tall oil will enter the wastewater stream. The effluent treatment plant must be designed to take care of this residual biochemical oxygen demand load and, in some cases, provide for color reduction in the treated effluent. One of seven papers presented in the symposium “Tall Oil,” AOCS Meeting, New Orleans, May 1973.  相似文献   
106.
107.
108.
Summary Legume seed proteins extracted with urea-containing buffer are fractionated by high-resolution 2D-electrophoresis (urea-IEF x pore gradient SDS-PAGE), both dimensions in horizontal ultrathin-layer polyacrylamide gel slabs. High reproducibility is obtained, because the first dimension is performed in a slab gel, where a large number of protein samples are separated under identical conditions. The gel of the first dimension (IEF) is fixed, stained with Coomassie Brilliant Blue G 250, and destained before application to the second-dimension gel (SDS-PAGE). Prestaining of the focused proteins does not alter the protein pattern obtained after SDS electrophoresis. Thus, bands are made visible before separation in the second dimension, and the amount of Ampholine in the dye front is reduced during electrophoresis. The first-dimension gels can easily be stored in the destaining solution until they are run in the second dimension. As the proteins are fixed in the gel, there is no loss of proteins and defocusing of bands due to diffusion during the SDS-equilibration procedure. Loading of the dimensionstable gel strip onto the second dimension gel is a very easy operation, since the ultrathin gel strip adheres to a plastic foil and is simply laid into a moulded gel through. The gel strip is not imbedded with polymerizing acrylamide or agarose solution like in the conventional gel-rod-techniques, because a very good surface contact is obtained between the two flat gels.
Ultradiinnschicht horizontale, hochauflösende Zweidimensional-Elektrophorese von Leguminosensamen-Proteinen mit Protein-Zwischenfärbung
Zusammenfassung Mit harnstoffhaltigen Tris-Glycin-Puffer extrahierte Leguminosensamen-Proteine werden mit der hochauflösenden 2D-Elektrophorese (Harnstoff-IEF x Gradientengel-SDS-Elektrophorese) aufgetrennt, wobei beide Dimensionen in horizontalen ultradünnen, auf Folie polymerisierten Polyacrylamid-Flachgelen durchgeführt werden. Die Flachgel-Focussierung (1. Dimension) erlaubt die Trennung einer großen Anzahl von Proteinproben unter identischen Bedingungen, wodurch die Reproduzierbarkeit von 2D-Elektrophoresen erheblich verbessert wird. Das Gel der ersten Dimension (IEF) wird mit Coomassie BB G 250 gefdrbt, bevor die einzelnen Gelstreifen für die zweite Dimension (Gradientengel-SDS-Elektrophorese) verwendet werden. Dies hat den Vorteil, daß die focussierten Proteine bereits vor dem zweiten Trennungsschritt sichtbar gemacht und zudem die Trägerampholyte in der Farbstoff Front bei der SDS-Elektrophorese stark vermindert werden. Die vorgefärbten Focussierungsgele können problemlos in der Entfärbelösung für die SDS-Gradientengel-Elektrophorese aufbewahrt werden. Der Proteinverlust und die Banden-diffusion bei der SDS-Aquilibrierung werden durch die Fixierung im Focussierungsgel verhindert. Das 2-D-Proteinmuster wird durch das Vorfärben der focussierten Proteine nicht verdndert. Die dimensionsstabilen, auf Folie polymerisierten Focussierungsstreifen lassen sich einfach handhaben und müssen nicht wie Rundgele an die zweite Dimension aufpolymerisiert werden. Der Gel-Gel-Kontakt der beiden Flachgele ist ohne weitere Hilfsmaßnahmen ausgezeichnet.
  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号