首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1193篇
  免费   57篇
  国内免费   4篇
电工技术   11篇
综合类   2篇
化学工业   218篇
金属工艺   40篇
机械仪表   49篇
建筑科学   17篇
矿业工程   5篇
能源动力   50篇
轻工业   35篇
水利工程   21篇
石油天然气   4篇
无线电   118篇
一般工业技术   262篇
冶金工业   188篇
原子能技术   18篇
自动化技术   216篇
  2024年   4篇
  2023年   12篇
  2022年   35篇
  2021年   59篇
  2020年   38篇
  2019年   40篇
  2018年   68篇
  2017年   69篇
  2016年   42篇
  2015年   28篇
  2014年   49篇
  2013年   75篇
  2012年   53篇
  2011年   66篇
  2010年   51篇
  2009年   63篇
  2008年   55篇
  2007年   38篇
  2006年   38篇
  2005年   28篇
  2004年   27篇
  2003年   26篇
  2002年   35篇
  2001年   20篇
  2000年   19篇
  1999年   19篇
  1998年   43篇
  1997年   25篇
  1996年   17篇
  1995年   14篇
  1994年   9篇
  1993年   14篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1973年   2篇
排序方式: 共有1254条查询结果,搜索用时 15 毫秒
51.
52.
53.
Silicone elastomers have the potential to be a valuable biomaterial due to their mechanical and chemical properties, easy processing, and high gas permeability. Some inherent properties of the pure silicone implant such as high hydrophobicity and low load bearing capacity can be problematic for biomedical applications. The issues were addressed by fabricating hydroxyapatite nanofiber/polydimethylsiloxane nanocomposites. The morphology of nanocomposite structures was visualized by high resolution transmission electron microscopy and field emission scanning electron microscopy. Improved mechanical strength and compliance of the prepared nanocomposite structures were obtained by frequency sweep and creep measurements. Surface hydrophilicity of polydimethylsiloxane was enhanced by hydroxyapatite nanofiber incorporation into the polymer matrix. The cytotoxicity and biocompatibility of the structures were analyzed using breast epithelial cells (MDA MB 231 cell line). These studies showed that the nanocomposite scaffold did not leach any cytotoxic material and showed better cell adhesion and cell proliferation compared to the unfilled elastomer.  相似文献   
54.
Thin plates of high-strength steel are frequently being used both in civil and military ballistic protection systems. The choice of alloy is then a function of application, ballistic performance, weight and price. In this study the perforation resistance of five different high-strength steels has been determined and compared against each other. The considered alloys are Weldox 500E, Weldox 700E, Hardox 400, Domex Protect 500 and Armox 560T. The yield stress for Armox 560T is about three times the yield stress for Weldox 500E, while the opposite yields for the ductility. To certify the perforation resistance of the various targets, two different ballistic protection classes according to the European norm EN1063 have been considered. These are BR6 (7.62 mm Ball ammunition) and BR7 (7.62 mm AP ammunition), where the impact velocity of the bullet is about 830 m/s in both. Perforation tests have been carried out using adjusted ammunition to determine the ballistic limit of the various steels. In the tests, a target thickness of 6 mm and 6 + 6 = 12 mm was used for protection class BR6 and BR7, respectively. A material test programme was conducted for all steels to calibrate a modified Johnson–Cook constitutive relation and the Cockcroft–Latham fracture criterion, while material data for the bullets mainly were taken from the literature. Finally, results from 2D non-linear FE simulations with detailed models of the bullets are presented and the different findings are compared against each other. As will be shown, good agreement between the FE simulations and experimental data for the AP bullets is in general obtained, while it was difficult to get reliable FE results using the Lagrangian formulation of LS-DYNA for the soft core Ball bullet.  相似文献   
55.
The identification of unknown pollution sources is a prerequisite for designing of a remediation strategy. In most of the real world situations, it is difficult to identify the pollution sources without a scientifically designed efficient monitoring network. The locations of the contaminant concentration measurement sites would determine the efficiency of the unknown source identification process to a large extent. Therefore coupled and iterative sequential source identification and dynamic monitoring network design framework is developed. The coupled approach provides a framework for necessary sequential exchange of information between monitoring network and source identification methodology. The preliminary identification of unknown sources, based on limited concentration data from existing arbitrarily located wells provides the initial rough estimate of the source fluxes. These identified source fluxes are then utilized for designing an optimal monitoring network for the first stage. Both the monitoring network and source identification process is repeated by sequential identification of sources and design of monitoring network which provides the feedback information. In the optimal source identification model, the Jacobian matrix which is the determinant for the search direction in the nonlinear optimization model links the groundwater flow-transport simulator and the optimization method. For the optimal monitoring network design, the integer programming based optimal design model requires as input, simulated sets of concentration data. In the proposed methodology, the concentration measurement data from the designed and implemented monitoring network are used as feedback information for sequential identification of unknown pollution sources. The potential applicability of the developed methodology is demonstrated for an illustrative study area.  相似文献   
56.
The synthesis and catalytic testing of several dendron–ordered mesoporous silica hybrids are reported. These materials are active in both the nitroaldol (Henry) reaction and the transesterification of glyceryl tributyrate to afford methyl esters. In both reactions it is observed that dendrons terminated with primary amines are more catalytically active than samples containing dendrons terminated with secondary amines. On a mmol nitrogen per gram of silica basis, the first generation dendrons are the most active for both chemistries, and the SBA-15 samples display a higher activity than the MCM-41 samples. The pore-size effect observed is consistent with significant diffusion resistance in the MCM-41 samples. The activity trend observed in the SBA-15 materials is consistent with decreased cooperative effects between the amines and surface silanols as the dendrons become larger. Clear trends are observed indicating that higher generation dendrons are more selective to alcohol formation in the Henry reaction. The dendron catalysts are much more active and stable than simple amines attached to silica in the transesterification of triglycerides. Preliminary results shown indicate that these materials can also catalyze more demanding chemistries, an example of which is the Aldol condensation of 5-(hydroxymethyl)furfural and acetone. The results shown indicate that dendron–OMS hybrids can serve as effective solid base catalysts for a diverse range of chemistries.  相似文献   
57.
Performance analysis of a solar photovoltaic operated domestic refrigerator   总被引:2,自引:0,他引:2  
This paper describes the fabrication, experimentation and simulation stages of converting a 165 l domestic electric refrigerator to a solar powered one. A conventional domestic refrigerator was chosen for this purpose and was redesigned by adding battery bank, inverter and transformer, and powered by solar photovoltaic (SPV) panels. Various performance tests were carried out to study the performance of the system. The coefficient of performance (COP) was observed to decrease with time from morning to afternoon and a maximum COP of 2.102 was observed at 7 AM. Simulations regarding economic feasibility of the system for the climatic conditions of Jaipur city (India) were also carried out using RETScreen 4. It was observed that the system can only be economically viable with carbon trading option taken into account, and an initial subsidy or a reduction in the component costs – mainly SPV panels and battery bank.  相似文献   
58.
The present experiments were focused on nanoindentation behaviour and the attendant “micro-pop-in” in a dense (~95% of theoretical) coarse-grain (~20 μm) alumina ceramic as a function of loading rate variations at three constant peak loads in the range of 105–106 μN. Based on the experimental results here we report for the first time, to the best of our knowledge, an increase in intrinsic nano scale contact resistance as well as the nanohardness with the loading rate. These observations were explained in terms of the correlation between the nanoscale plasticity and shear stress active just underneath the nanoindenter.  相似文献   
59.
The precursor glass in the ZnO–Al2O3–B2O3–SiO2 (ZABS) system doped with Eu2O3 was prepared by the melt‐quench technique. The transparent willemite, Zn2SiO4 (ZS) glass–ceramic nanocomposites were derived from this precursor glass by a controlled crystallization process. The formation of willemite crystal phase, size, and morphology with increase in heat‐treatment time was examined by X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FESEM) techniques. The average calculated crystallite size obtained from XRD is found to be in the range 18–70 nm whereas the grain size observed in FESEM is 50–250 nm. The refractive index value is decreased with increase in heat‐treatment time which is caused by the partial replacement of ZnO4 units of ZS nanocrystals by AlO4 units due to generation of vacancies. Fourier transform infrared (FTIR) reflection spectroscopy was used to evaluate its structural evolution. Vickers hardness study indicates marked improvement of hardness in the resultant glass‐ceramics compared with its precursor glass. The photoluminescence spectra of Eu3+ ions exhibit emission transitions of 5D07Fj (j = 0, 1, 2, 3, and 4) and its excitation spectra show an intense absorption band at 395 nm. These spectra reveal that the luminescence performance of the glass–ceramic nanocomposites is enhanced up to 17‐fold with the process of heat treatment. This enhancement is caused by partitioning of Eu3+ ions into glassy phase instead of into the willemite crystals with progress of heat treatment. Such luminescent glass–ceramic nanocomposites are expected to find potential applications in solid‐state red lasers, phosphors, and optical display systems.  相似文献   
60.
Dey J  Tran RT  Shen J  Tang L  Yang J 《大分子材料与工程》2011,296(12):1149-1157
We have recently reported upon the development of crosslinked urethane-doped polyester (CUPE) network elastomers, which was motivated by the desire to overcome the drawbacks presented by crosslinked network polyesters and biodegradable polyurethanes for soft tissue engineering applications. Although the effect of the isocyanate content and post-polymerization conditions on the material structure-property relationship was examined in detail, the ability of the diol component to modulate the material properties was only studied briefly. Herein, we present a detailed report on the development of CUPE polymers synthesized using diols 4, 6, 8, 10, or 12 methylene units in length in order to investigate what role the diol component plays on the resulting material's physical properties, and assess their long-term biological performance in vivo. An increase in the diol length was shown to affect the physical properties of the CUPE polymers primarily through lowered polymeric crosslinking densities and elevated material hydrophobicity. The use of longer chain diols resulted in CUPE polymers with increased molecular weights resulting in higher tensile strength and elasticity, while also increasing the material hydrophobicity to lower bulk swelling and prolong the polymer degradation rates. Although the number of methylene units largely affected the physical properties of CUPE, the choice of diol did not affect the overall polymer cell/tissue-compatibility both in vitro and in vivo. In conclusion, we have established the diol component as an important parameter in controlling the structure-property relationship of the polymer in addition to diisocyanate concentration and post-polymerization conditions. Expanding the family of CUPE polymers increases the choices of biodegradable elastomers for tissue engineering applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号