首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   33篇
化学工业   76篇
金属工艺   1篇
建筑科学   5篇
能源动力   1篇
轻工业   57篇
无线电   20篇
一般工业技术   47篇
冶金工业   5篇
自动化技术   9篇
  2023年   4篇
  2022年   20篇
  2021年   23篇
  2020年   6篇
  2019年   2篇
  2018年   16篇
  2017年   5篇
  2016年   17篇
  2015年   7篇
  2014年   14篇
  2013年   9篇
  2012年   15篇
  2011年   9篇
  2010年   9篇
  2009年   10篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
211.
Recent studies give support for a connection between the presence of inorganic particles (of m and nm size) in different organs and tissues and the development of inflammatory foci, called granulomas. As the potential source of particles (e.g. porcelain dental bridges) and the location of particle detection were topographically far apart, a distribution via the blood stream appears highly probable. Thus, endothelial cells, which line the inner surface of blood vessels, would come into direct contact with these particles, making particle–endothelial interactions potentially pathogenically relevant. The objective of this study was to evaluate the effects that five different nano-scaled particles (PVC, TiO2, SiO2, Co, Ni) have on endothelial cell function and viability. Therefore, human endothelial cells were exposed to different amounts of the above-mentioned particles. Although most particle types are shown to be internalised (except Ni-particles), only Co-particles possessed cytotoxic effects. Furthermore, an impairment of the proliferative activity and a pro-inflammatory stimulation of endothelial cells were induced by exposure to Co- and, to a lesser extent, by SiO2-particles. If a pro-inflammatory stimulation of endothelial cells occurs in vivo, a chronic inflammation could be a possible consequence.  相似文献   
212.
Structural Upgrading of Masonry Columns by Using Composite Reinforcements   总被引:3,自引:0,他引:3  
Emerging techniques that use fiber-reinforced polymer (FRP) composites for strengthening and conservation of historic masonry are becoming increasingly accepted. In the last decades steel plates or wood frames were used for external confinement in containing the lateral dilation of masonry columns subjected to axial loads. In the last years FRP epoxy bonded strips or jackets were also employed to increase strength and ductility with encouraging results in terms of mechanical behavior and cost effectiveness. The behavior of masonry columns confined with FRP and subjected to axial compression is studied in this paper. An extended experimental investigation is presented in order to show the mechanical behavior of circular masonry columns built with calcareous blocks that may be commonly found in Italy and all over Europe in historical buildings. Different stacking schemes were used to build the columns, aiming to simulate the most common situations in existing masonry structures. Carbon FRP sheets were applied as external reinforcement; different amounts and different schemes of confining reinforcement were studied. The experiments include a new reinforcement technique made by using injected FRP bars through the columns cross section. Such a solution can be considered in place of a more traditional confinement, when external reinforcement must be avoided, or in addition to external reinforcement when an improved confinement effect is required. The structural behavior of masonry columns damaged under different levels of load and strengthened by using FRP reinforcements, was also investigated. Experimental results revealed the effectiveness of the FRP confinement for masonry columns, also for columns that were strongly predamaged before strengthening. A computation of the ultimate load was conducted using the Italian National Research Council recommendations to show an application of the design approach recently proposed in Italy. An existing analytical model, previously developed by the writers, was applied for computation of expected experimental values.  相似文献   
213.
This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours’ incubation time.  相似文献   
214.
Mutations in the KCNA1 gene, encoding the voltage-gated potassium channel Kv1.1, have been associated with a spectrum of neurological phenotypes, including episodic ataxia type 1 and developmental and epileptic encephalopathy. We have recently identified a de novo variant in KCNA1 in the highly conserved Pro-Val-Pro motif within the pore of the Kv1.1 channel in a girl affected by early onset epilepsy, ataxia and developmental delay. Other mutations causing severe epilepsy are located in Kv1.1 pore domain. The patient was initially treated with a combination of antiepileptic drugs with limited benefit. Finally, seizures and ataxia control were achieved with lacosamide and acetazolamide. The aim of this study was to functionally characterize Kv1.1 mutant channel to provide a genotype–phenotype correlation and discuss therapeutic options for KCNA1-related epilepsy. To this aim, we transfected HEK 293 cells with Kv1.1 or P403A cDNAs and recorded potassium currents through whole-cell patch-clamp. P403A channels showed smaller potassium currents, voltage-dependent activation shifted by +30 mV towards positive potentials and slower kinetics of activation compared with Kv1.1 wild-type. Heteromeric Kv1.1+P403A channels, resembling the condition of the heterozygous patient, confirmed a loss-of-function biophysical phenotype. Overall, the functional characterization of P403A channels correlates with the clinical symptoms of the patient and supports the observation that mutations associated with severe epileptic phenotype cluster in a highly conserved stretch of residues in Kv1.1 pore domain. This study also strengthens the beneficial effect of acetazolamide and sodium channel blockers in KCNA1 channelopathies.  相似文献   
215.
The tyrosinase enzyme, which catalyzes the hydroxylation of monophenols and the oxidation of o-diphenols, is typically involved in the synthesis of the dark product melanin starting from the amino acid tyrosine. Contributing to the browning of plant and fruit tissues and to the hyperpigmentation of the skin, leading to melasma or age spots, the research of possible tyrosinase inhibitors has attracted much interest in agri-food, cosmetic, and medicinal industries. In this study, we analyzed the capability of antamanide, a mushroom bioactive cyclic decapeptide, and some of its glycine derivatives, compared to that of pseudostellarin A, a known tyrosinase inhibitor, to hinder tyrosinase activity by using a spectrophotometric method. Additionally, computational docking studies were performed in order to elucidate the interactions occurring with the tyrosinase catalytic site. Our results show that antamanide did not exert any inhibitory activity. On the contrary, the three glycine derivatives AG9, AG6, and AOG9, which differ from each other by the position of a glycine that substitutes phenylalanine in the parent molecule, improving water solubility and flexibility, showed tyrosinase inhibition by spectrophotometric assays. Analytical data were confirmed by computational studies.  相似文献   
216.
The identification of a highly sensitive method to check the delivery of administered nanodrugs into the tumor cells is a crucial step of preclinical studies aimed to develop new nanoformulated cures, since it allows the real therapeutic potential of these devices to be forecast. In the present work, the ability of an H‐ferritin (HFn) nanocage, already investigated as a powerful tool for cancer therapy thanks to its ability to actively interact with the transferrin receptor 1, to act as an efficient probe for the monitoring of nanodrug delivery to tumors is demonstrated. The final formulation is a bioluminescent nanoparticle, where the luciferin probe is conjugated on nanoparticle surface by means of a disulfide containing linker (Luc‐linker@HFn) which is subjected to glutathione‐induced cyclization in tumor cell cytoplasm. The prolonged imaging of luciferase+ tumor models, demonstrated by an in vitro and an in vivo approach, associated with the prolonged release of luciferin into cancer cells by disulfide bridge reduction, clearly indicates the high efficiency of Luc‐linker@HFn for drug delivery to the tumor tissues.  相似文献   
217.
218.
Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole‐dominated on‐state, the off‐state, and the electron‐dominated on‐state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal‐oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light‐emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field‐effect transistors, we focus on ambipolar light‐emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current‐driven laser, as well as for photonics–electronics interconnection.  相似文献   
219.
In order to study the pathobiological impact of the nanometre-scale of materials, we evaluated the effects of five different materials as nanoparticulate biomaterials in comparison with bulk samples in contact with living tissues. Five groups out of 10 rats were implanted bilaterally for up to 12 months with materials of the same type, namely TiO2, SiO2, Ni, Co and polyvinyl chloride (PVC), subcutaneously with bulk material on one side of the vertebral column and intramuscularly with nanoparticulate material on the contralateral side. At the end of each implantation time, the site was macroscopically examined, followed by histological processing according to standard techniques. Malignant mesenchymal tumours (pleomorphic sarcomas) were obtained in five out of six cases of implanted Co nanoparticle sites, while a preneoplastic lesion was observed in an animal implanted with Co in bulk form. In the Ni group, all animals rapidly developed visible nodules at the implanted sites between 4 and 6 months, which were diagnosed as rhabdomyosarcomas. Since the ratio of surface area to volume did not show significant differences between the Ni/Co group and the TiO2/SiO2/PVC group, we suggested that the induction of neoplasia was not mediated by physical effects, but was mediated by the well-known carcinogenic impact of Ni and Co. The data from the Co group show that the physical properties (particulate versus bulk form) could have a significant influence on the acceleration of the neoplastic process.  相似文献   
220.
Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号