首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2392篇
  免费   393篇
  国内免费   12篇
电工技术   52篇
综合类   10篇
化学工业   743篇
金属工艺   62篇
机械仪表   59篇
建筑科学   98篇
矿业工程   15篇
能源动力   191篇
轻工业   256篇
水利工程   27篇
石油天然气   66篇
无线电   290篇
一般工业技术   447篇
冶金工业   114篇
原子能技术   28篇
自动化技术   339篇
  2023年   71篇
  2022年   99篇
  2021年   121篇
  2020年   111篇
  2019年   137篇
  2018年   152篇
  2017年   134篇
  2016年   169篇
  2015年   132篇
  2014年   154篇
  2013年   226篇
  2012年   118篇
  2011年   132篇
  2010年   98篇
  2009年   100篇
  2008年   86篇
  2007年   79篇
  2006年   58篇
  2005年   67篇
  2004年   60篇
  2003年   37篇
  2002年   31篇
  2001年   40篇
  2000年   36篇
  1999年   36篇
  1998年   43篇
  1997年   28篇
  1996年   25篇
  1995年   10篇
  1994年   14篇
  1993年   17篇
  1992年   8篇
  1991年   12篇
  1990年   16篇
  1989年   15篇
  1988年   6篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1980年   6篇
  1978年   6篇
  1977年   8篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
  1973年   5篇
  1970年   4篇
排序方式: 共有2797条查询结果,搜索用时 15 毫秒
51.
52.
We present the results of experimental study of the electric discharge between metal electrodes of various geometry and technical water within the pressure range of 8 × 103–105 Pa at the saw-tooth voltage generator frequency, f = 40 MHz, and the interelectrode distance, l = 3–30 mm. We consider transfer of the streamer discharge into spark one depending on the geometry of the metal electrode and its material. We investigate the electrical characteristics of the discharge between the plate electrode and the technical water within a wide pressure range. The essential influence of the streamer discharge type on the ozone release within the investigated parameters range is discovered.  相似文献   
53.
54.
The effect of the initial annealing temperature on the evolution of microstructure and microhardness in high purity OFHC Cu is investigated after processing by HPT. Disks of Cu are annealed for 1 h at two different annealing temperatures, 400 and 800 °C, and then processed by HPT at room temperature under a pressure of 6.0 GPa for 1/4, 1/2, 1, 5, and 10 turns. Samples are stored for 6 months after HPT processing to examine the self‐annealing effects. Electron backscattered diffraction (EBSD) measurements are recorded for each disk at three positions: center, mid‐radius, and near edge. Microhardness measurements are also recorded along the diameters of each disk. Both alloys show rapid hardening and then strain softening in the very early stages of straining due to self‐annealing with a clear delay in the onset of softening in the alloy initially annealed at 800 °C. This delay is due to the relatively larger initial grain size compared to the alloy initially annealed at 400 °C. The final microstructures consist of homogeneous fine grains having average sizes of ≈0.28 and ≈0.34 µm for the alloys initially annealed at 400 and 800 °C, respectively. A new model is proposed to describe the behavior of the hardness evolution by HPT in high purity OFHC Cu.  相似文献   
55.
The potential of poly(acrylonitrile) electrospun membranes with tuneable pore size and fiber distributions were investigated for airborne fine‐particle filtration for the first time. The impact of solution concentration on final membrane properties are evaluated for the purpose of designing separation materials with higher separation efficiency. The properties of fibers and membranes are investigated systematically: the average pore distribution, as characterized by capillary flow porometry, and thermo‐mechanical properties of the mats are found to be dependent on fiber diameter and on specific electrospinning conditions. Filtration efficiency and pressure drop are calculated from measurement of penetration through the membranes using potassium chloride (KCl) aerosol particles ranging from 300 nm to 12 μm diameter. The PAN membranes exhibited separation efficiencies in the range of 73.8–99.78% and a typical quality factor 0.0224 (1 Pa?1) for 12 wt% PAN with nanofibers having a diameter of 858 nm. Concerning air flow rate, the quality factor and filtration efficiency of the electrospun membranes at higher face velocity are much more stable than for commercial membranes. The results suggest that the structure of electrospun membranes is the best for air filtration in terms of filtration stability at high air flow rate.
  相似文献   
56.
There is an increasing demand for the development of a simple Si‐based universal memory device at the nanoscale that operates at high frequencies. Spin‐electronics (spintronics) can, in principle, increase the efficiency of devices and allow them to operate at high frequencies. A primary challenge for reducing the dimensions of spintronic devices is the requirement for high spin currents. To overcome this problem, a new approach is presented that uses helical chiral molecules exhibiting spin‐selective electron transport, which is called the chiral‐induced spin selectivity (CISS) effect. Using the CISS effect, the active memory device is miniaturized for the first time from the micrometer scale to 30 nm in size, and this device presents memristor‐like nonlinear logic operation at low voltages under ambient conditions and room temperature. A single nanoparticle, along with Au contacts and chiral molecules, is sufficient to function as a memory device. A single ferromagnetic nanoplatelet is used as a fixed hard magnet combined with Au contacts in which the gold contacts act as soft magnets due to the adsorbed chiral molecules.  相似文献   
57.
Emerging technologies such as edge computing, Internet of Things (IoT), 5G networks, big data, Artificial Intelligence (AI), and Unmanned Aerial Vehicles (UAVs) empower, Industry 4.0, with a progressive production methodology that shows attention to the interaction between machine and human beings. In the literature, various authors have focused on resolving security problems in UAV communication to provide safety for vital applications. The current research article presents a Circle Search Optimization with Deep Learning Enabled Secure UAV Classification (CSODL-SUAVC) model for Industry 4.0 environment. The suggested CSODL-SUAVC methodology is aimed at accomplishing two core objectives such as secure communication via image steganography and image classification. Primarily, the proposed CSODL-SUAVC method involves the following methods such as Multi-Level Discrete Wavelet Transformation (ML-DWT), CSO-related Optimal Pixel Selection (CSO-OPS), and signcryption-based encryption. The proposed model deploys the CSO-OPS technique to select the optimal pixel points in cover images. The secret images, encrypted by signcryption technique, are embedded into cover images. Besides, the image classification process includes three components namely, Super-Resolution using Convolution Neural Network (SRCNN), Adam optimizer, and softmax classifier. The integration of the CSO-OPS algorithm and Adam optimizer helps in achieving the maximum performance upon UAV communication. The proposed CSODL-SUAVC model was experimentally validated using benchmark datasets and the outcomes were evaluated under distinct aspects. The simulation outcomes established the supreme better performance of the CSODL-SUAVC model over recent approaches.  相似文献   
58.
One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness. The rapid and accurate identification mechanism for lard adulteration in meat products is highly necessary, for developing a mechanism trusted by consumers and that can be used to make a definitive diagnosis. Fourier Transform Infrared Spectroscopy (FTIR) is used in this work to identify lard adulteration in cow, lamb, and chicken samples. A simplified extraction method was implied to obtain the lipids from pure and adulterated meat. Adulterated samples were obtained by mixing lard with chicken, lamb, and beef with different concentrations (10%–50% v/v). Principal component analysis (PCA) and partial least square (PLS) were used to develop a calibration model at 800–3500 cm−1. Three-dimension PCA was successfully used by dividing the spectrum in three regions to classify lard meat adulteration in chicken, lamb, and beef samples. The corresponding FTIR peaks for the lard have been observed at 1159.6, 1743.4, 2853.1, and 2922.5 cm−1, which differentiate chicken, lamb, and beef samples. The wavenumbers offer the highest determination coefficient R2 value of 0.846 and lowest root mean square error of calibration (RMSEC) and root mean square error prediction (RMSEP) with an accuracy of 84.6%. Even the tiniest fat adulteration up to 10% can be reliably discovered using this methodology.  相似文献   
59.
In this paper we discuss a pulsed second sound experiment, aimed at determining accurately the critical exponent , and the predicted logarithmic correction to scaling, for the superfluid density along a tricritical path in the 3 He- 4 He phase diagram. We present an accurate estimate for the limits for closest approach to the tricritical point, as set by gravitationally induced sample inhomogeneities and finite size effects, and discuss some of the complications associated with measurements close to the tricritical point.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号