首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   2篇
电工技术   4篇
化学工业   20篇
金属工艺   4篇
机械仪表   2篇
建筑科学   10篇
能源动力   2篇
轻工业   12篇
无线电   53篇
一般工业技术   25篇
冶金工业   830篇
自动化技术   21篇
  2022年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   4篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   45篇
  1998年   283篇
  1997年   155篇
  1996年   98篇
  1995年   54篇
  1994年   54篇
  1993年   55篇
  1992年   7篇
  1991年   8篇
  1990年   13篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1983年   4篇
  1982年   6篇
  1981年   2篇
  1980年   14篇
  1979年   1篇
  1978年   1篇
  1977年   19篇
  1976年   44篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   2篇
  1960年   1篇
排序方式: 共有983条查询结果,搜索用时 15 毫秒
101.
PURPOSE: To develop a statistical model that predicts the histology (necrosis, mature teratoma, or cancer) after chemotherapy for metastatic nonseminomatous germ cell tumor (NSGCT). PATIENTS AND METHODS: An international data set was collected comprising individual patient data from six study groups. Logistic regression analysis was used to estimate the probability of necrosis and the ratio of cancer and mature teratoma. RESULTS: Of 556 patients, 250 (45%) had necrosis at resection, 236 (42%) had mature teratoma, and 70 (13%) had cancer. Predictors of necrosis were the absence of teratoma elements in the primary tumor, prechemotherapy normal alfa-fetoprotein (AFP), normal human chorionic gonadotropin (HCG), and elevated lactate dehydrogenase (LDH) levels, a small prechemotherapy or postchemotherapy mass, and a large shrinkage of the mass during chemotherapy. Multivariate combination of predictors yielded reliable models (goodness-of-fit tests, P > .20), which discriminated necrosis well from other histologies (area under the receiver operating characteristic (ROC) curve, .84), but which discriminated cancer only reasonably from mature teratoma (area, .66). Internal and external validation confirmed these findings. CONCLUSION: The validated models estimate with high accuracy the histology at resection, especially necrosis, based on well-known and readily available predictors. The predicted probabilities may help to choose between immediate resection of a residual mass or follow-up, taking into account the expected benefits and risks of resection, feasibility of frequent follow-up, the financial costs, and the patient's individual preferences.  相似文献   
102.
103.
OBJECTIVE: Several recent studies have implicated a role of endogenous nitric oxide (NO) in the pathophysiology of myocardial ischemic/reperfusion injury. However, the mechanism by which NO exerts its beneficial/detrimental effects remains unknown. This study examined the intracellular signaling of NO by studying the role of the NO-cGMP signaling pathway on the phospho-diesteratic breakdown and turnover of phosphoinositides during myocardial ischemia and reperfusion. METHODS: Isolated working rat hearts were made ischemic for 30 min followed by 30 min of reperfusion. A separate group of hearts were pre-perfused with 3 mM L-arginine for 10 min prior to ischemia. The release of NO was monitored using an on-line amperometric sensor. The aortic flow and developed pressure were examined to determine the effects of L-arginine on ischemic/reperfusion injury. For signal transduction experiments, sarcolemmal membranes were radiolabeled by perfusing the isolated hearts with [3H]myoinositol and [14C]arachidonic acid. Hearts were then perfused for 10 min in the presence or absence of L-arginine via the Langendorff mode. Ischemia was induced for 30 min followed by 30 min of reperfusion. Experiments were terminated before L-arginine and after L-arginine treatment, after ischemia, and during reperfusion. Biopsies were processed to determine the isotopic incorporation into various phosphoinositols as well as phosphatidic acid and diacylglycerol. cGMP was assayed by radioimmunoassay and SOD content was determined by enzymatic analysis. RESULTS: The release of NO was diminished following ischemia and reperfusion and was augmented by L-arginine. L-Arginine reduced ischemic/reperfusion injury as evidenced by the enhanced myocardial functional recovery. cGMP, which remained unaffected by ischemia and reperfusion, was stimulated significantly after L-arginine treatment. The cGMP level persisted up to 10 min of reperfusion and then dropped slightly. Reperfusion of ischemic myocardium resulted in significant accumulation of radiolabeled inositol phosphate, inositol bisphosphate, and inositol triphosphate. Isotopic incorporation of [3H]inositol into phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate was increased significantly during reperfusion. Reperfusion of the ischemic heart prelabeled with [14C]-arachidonic acid resulted in modest increases in [14C]diacylglycerol and [14C]phosphatidic acid. Pretreatment of the heart with L-arginine significantly reversed this enhanced phosphodiesteratic breakdown during ischemia and early reperfusion. However, at the end of the reperfusion the inhibitory effect of L-arginine on the phosphodiesterases seems to be reduced. In L-arginine-treated hearts, SOD activity was progressively decreased with the duration of reperfusion time. CONCLUSIONS: The results suggest for the first time that NO plays a significant role in transmembrane signaling in the ischemic myocardium. The signaling seems to be transmitted via cGMP and opposes the effects of phosphodiesterases by inhibiting the ischemia/reperfusion-induced phosphodiesteratic breakdown. This signaling effect appears to be reduced as reperfusion progresses. These results, when viewed in the light of free radical chemistry of NO, suggest that such on- and off-signaling of NO may be linked to its interaction with the superoxide radical generated during the reperfusion of ischemic myocardium.  相似文献   
104.
105.
Highly sialylated gangliosides have been shown to alter cellular adhesion to a fibronectin matrix. The effect of these gangliosides on the adhesion, spreading, and migration of cultured keratinocytes on a fibronectin matrix has not been explored. Ganglioside GT1b significantly prevented attachment of keratinocytes to fibronectin and also detached previously adherent keratinocytes in a concentration-dependent manner without cell toxicity. GT1b did not affect adhesion of keratinocytes to wells coated with laminin, type I or type IV collagen, 804G extracellular matrix, or albumin. GT1b also inhibited keratinocyte migration on fibronectin in a concentration-dependent manner at concentrations as low as 5 nM GT1b, but had no effect on migration of keratinocytes plated on other matrices. GT1b binds to intact fibronectin and to the 120-kD RGDS-containing cell-binding fibronectin fragment, but not to the heparin- or gelatin-binding fragments of fibronectin. Although RGDS competes with GT1b in inhibiting adhesion, GT1b does not diminish binding of keratinocytes to a derivatized RGDS substratum, suggesting that the GT1b effect involves a non-RGDS site in the cell-binding region that modulates RGDS/alpha 5 beta 1 integrin receptor interaction. Through a specific effect on keratinocyte interaction with fibronectin, GT1b may participate in the regulation of cell adhesion and migration on a fibronectin substratum, which are important events during wound healing and the spreading of cutaneous neoplasia.  相似文献   
106.
Müllerian inhibiting substance (MIS), an inhibitor of growth and development of the female reproductive ducts in male fetuses, requires precise proteolytic cleavage to yield its biologically active species. Human plasmin is now used to cleave and, thereby, activate immunoaffinity-purified recombinant human MIS at its monobasic arginine-serine site at residues 427-428. To avoid the need for exogenous enzymatic cleavage and to simplify purification, we created an arginine-arginine dibasic cleavage site (MIS RR) using site-directed mutagenesis to change the serine at position 428 (AGC) to an arginine (cGC). The mutant cDNA was then stably transfected into a MIS-responsive ocular melanoma cell line, OM431, followed by cloning for amplified expression to test its biological activity in vitro and in vivo. Media from each clone were assayed for production of MIS RR by a sensitive ELISA for holo-MIS, and high- and low-producing clones were selected for further study. Media from the highest MIS RR producer caused Müllerian duct regression in an organ culture bioassay. Other transfections were done with an empty vector (pcDNAI Neo) or a construct lacking the leader sequence and thus failing to secrete MIS, to serve as controls. The OM431 clones containing the MIS RR mutant were growth inhibited in monolayer culture. The high- and low-producing MIS RR OM431 clones, along with transfected OM431 controls, were injected into the tail veins of immunosuppressed severe combined immunodeficiency mice for in vivo analyses. Four to 6 weeks later, pulmonary metastases were counted in uniformly inflated lungs. OM431 clones containing the more easily cleaved MIS RR displayed a significant dose-dependent reduction in pulmonary metastases when compared to the lungs of animals given injections of OM431 clones containing empty vector, leaderless MIS, or wild-type MIS that requires activation by plasmin cleavage. Since the purification protocol of MIS RR is less complicated than that for wild-type MIS, which requires subsequent enzymatic activation, MIS RR can be used for scale-up production with increased yields for further therapeutic trials against MIS-sensitive tumors.  相似文献   
107.
BACKGROUND: Many Helicobacter pylori strains produce a cytotoxin that induces cytoplasmic vacuolation in various types of eukaryotic cells. In contrast with the marked cell vacuolation that occurs in vitro in response to this cytotoxin, comparatively little epithelial vacuolation has been observed in the gastric mucosa of H pylori infected persons. AIMS: Experiments were performed to determine the susceptibility of human gastric epithelial cells in vitro to H pylori vacuolating cytotoxin activity. METHODS: Human gastric epithelial cells, harvested from upper gastrointestinal endoscopic biopsy specimens, were incubated overnight with broth culture supernatants from either a wild type cytotoxin producing (tox+) H pylori strain or an isogenic mutant strain that lacks cytotoxin activity. RESULTS: Prominent cytoplasmic vacuolation occurred in response to tox+ supernatant, but not supernatant from the isogenic mutant strain. Primary human gastric epithelial cells were significantly more sensitive to H pylori vacuolating cytotoxin activity than were either HeLa or AGS cells. Exposure of human gastric epithelial cells to high concentrations of tox+ supernatant for 48 hours caused lethal cell injury. CONCLUSIONS: These studies indicate that primary human gastric epithelial cells are highly sensitive to H pylori vacuolating cytotoxin activity.  相似文献   
108.
Protein kinase C (PKC) has been implicated in the preconditioning-induced cardiac protection in ischemic/reperfused myocardium. We studied the effect of PKC inhibition with calphostin C (25, 50, 100, 200, 400, and 800 nM), a potent and specific inhibitor of PKC, in isolated working nonpreconditioned and preconditioned ischemic/reperfused hearts. In the nonpreconditioned groups, all hearts underwent 30 min of normothermic global ischemia followed by 30 min of reperfusion. In the preconditioned groups, hearts were subjected to four cycles of ischemic preconditioning by using 5 min of ischemia followed by 10 min reperfusion, before the induction of 30 min ischemia and reperfusion. At low concentrations of calphostin C (25, 50, and 100 nM), the PKC inhibitor had no effect on the incidence or arrhythmias or postischemic cardiac function in the nonpreconditioned ischemic/reperfused groups. With 200 and 400 nM of calphostin C, a significant increase in postischemic function and a reduction in the incidence of arrhythmias were observed in the nonpreconditioned ischemic/reperfused groups. Increasing the concentration of calphostin C to 800 NM, the recovery of postischemic cardiac function was similar to that of the drug-free control group. In preconditioned hearts, lower concentrations (< 100 nM) of calphostin C did not change the response of the myocardium to ischemia and reperfusion in comparison to the preconditioned drug-free myocardium. Two hundred and 400 nM of the PKC inhibitor further reduced the incidence of ventricular fibrillation (VF) from the preconditioned drug-free value of 50% to 0 (p < 0.05) and 0 (p < 0.05), respectively, indicating that the combination of the two, preconditioning and calphostin C, affords significant additional protection. Increasing the concentration of calphostin C to 800 nM blocked the cardioprotective effect of preconditioning (100% incidence of VF). The recovery of cardiac function was similarly improved at calphostin C doses of 200 and 400 nM and was reduced at 800 nM (p < 0.05). With 200 and 400 nM of calphostin C, both cytosolic and particulate PKC activity were reduced by approximately 40 and 60%, respectively, in both preconditioned and preconditioned/ischemic/reperfused hearts. The highest concentration of calphostin C (800 nM) resulted in almost a complete inhibition of cytosolic (100%) and particulate (85%) PKC activity correlated with the abolition of preconditioning-induced cardiac protection. In conclusion, calphostin C protects the ischemic myocardium obtained from intact animals, provides significant additional protection to preconditioning at moderate doses, and blocks the protective effect of preconditioning at high concentrations. The dual effects of calphostin C appear to be strictly dose and "enzyme inhibition" related.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号