首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60345篇
  免费   3071篇
  国内免费   89篇
电工技术   443篇
综合类   138篇
化学工业   13217篇
金属工艺   1226篇
机械仪表   1258篇
建筑科学   1859篇
矿业工程   145篇
能源动力   1404篇
轻工业   10455篇
水利工程   593篇
石油天然气   357篇
武器工业   8篇
无线电   2478篇
一般工业技术   9856篇
冶金工业   11687篇
原子能技术   326篇
自动化技术   8055篇
  2024年   125篇
  2023年   545篇
  2022年   1085篇
  2021年   1763篇
  2020年   1283篇
  2019年   1445篇
  2018年   2294篇
  2017年   2258篇
  2016年   2369篇
  2015年   1732篇
  2014年   2232篇
  2013年   4597篇
  2012年   3587篇
  2011年   3521篇
  2010年   2866篇
  2009年   2588篇
  2008年   2448篇
  2007年   2216篇
  2006年   1662篇
  2005年   1352篇
  2004年   1219篇
  2003年   1220篇
  2002年   1058篇
  2001年   853篇
  2000年   749篇
  1999年   796篇
  1998年   3750篇
  1997年   2510篇
  1996年   1650篇
  1995年   976篇
  1994年   777篇
  1993年   828篇
  1992年   335篇
  1991年   317篇
  1990年   239篇
  1989年   263篇
  1988年   269篇
  1987年   246篇
  1986年   218篇
  1985年   236篇
  1984年   218篇
  1983年   146篇
  1982年   183篇
  1981年   213篇
  1980年   229篇
  1979年   123篇
  1978年   115篇
  1977年   367篇
  1976年   770篇
  1973年   109篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
In a literature review on the last 20 years of automated analysis of feature models, the formalization of analysis operations was identified as the most relevant challenge in the field. This formalization could provide very valuable assets for tool developers such as a precise definition of the analysis operations and, what is more, a reference implementation, i.e., a trustworthy, not necessarily efficient implementation to compare different tools outputs. In this article, we present the FLAME framework as the result of facing this challenge. FLAME is a formal framework that can be used to formally specify not only feature models, but other variability modeling languages (VML s) as well. This reusability is achieved by its two-layered architecture. The abstract foundation layer is the bottom layer in which all VML-independent analysis operations and concepts are specified. On top of the foundation layer, a family of characteristic model layers—one for each VML to be formally specified—can be developed by redefining some abstract types and relations. The verification and validation of FLAME has followed a process in which formal verification has been performed traditionally by manual theorem proving, but validation has been performed by integrating our experience on metamorphic testing of variability analysis tools, something that has shown to be much more effective than manually designed test cases. To follow this automated, test-based validation approach, the specification of FLAME, written in Z, was translated into Prolog and 20,000 random tests were automatically generated and executed. Tests results helped to discover some inconsistencies not only in the formal specification, but also in the previous informal definitions of the analysis operations and in current analysis tools. After this process, the Prolog implementation of FLAME is being used as a reference implementation for some tool developers, some analysis operations have been formally specified for the first time with more generic semantics, and more VML s are being formally specified using FLAME.  相似文献   
992.
In this paper, we investigate consensus and disturbance attenuation in a chain of mobile agents, which include non‐autonomous agents, semi‐autonomous agents and autonomous agents. In particular, the nonlinear dynamics of non‐autonomous agents is given and cannot be designed, while the dynamics of semi‐autonomous and autonomous agents can be partially and fully designed, respectively. To improve the robustness of multi‐agent chains against disturbances, we propose a nonlinear control framework for semi‐autonomous and autonomous agents such that they mimic the behavior of non‐autonomous agents for compatibility while also exploiting long‐range connections with distant agents. This framework ensures the existence of a unique consensus equilibrium, which is independent of the network size, connectivity topologies, control gains and information delays. Robustness of multi‐agent chains against disturbances is investigated by evaluating the frequency response at the nonlinear level. For infinitely long multi‐agent chains with recurrent patterns, we also derive a condition that ensures the disturbance attenuation but only requires the analysis of the linearized model. A case study is conducted for a connected vehicle system where numerical simulations are used to validate the analytical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
993.
In Cognitive Science, conceptual blending has been proposed as an important cognitive mechanism that facilitates the creation of new concepts and ideas by constrained combination of available knowledge. It thereby provides a possible theoretical foundation for modeling high-level cognitive faculties such as the ability to understand, learn, and create new concepts and theories. Quite often the development of new mathematical theories and results is based on the combination of previously independent concepts, potentially even originating from distinct subareas of mathematics. Conceptual blending promises to offer a framework for modeling and re-creating this form of mathematical concept invention with computational means. This paper describes a logic-based framework which allows a formal treatment of theory blending (a subform of the general notion of conceptual blending with high relevance for applications in mathematics), discusses an interactive algorithm for blending within the framework, and provides several illustrating worked examples from mathematics.  相似文献   
994.
This paper presents a methodology to obtain a guaranteed‐reliability controller for constrained linear systems, which switch between different modes according to a Markov chain (Markov jump linear systems). Inside the classical maximal robust controllable set, there is 100% guarantee of never violating constraints at future time. However, outside such set, some sequences might make hitting constraints unavoidable for some disturbance realisations. A guaranteed‐reliability controller based on a greedy heuristic approach was proposed in an earlier work for disturbance‐free, robustly stabilisable Markov jump linear systems. Here, extensions are presented by, first, considering bounded disturbances and, second, presenting an iterative algorithm based on dynamic programming. In non‐stabilisable systems, reliability is zero; therefore, prior results cannot be applied; in this case, optimisation of a mean‐time‐to‐failure bound is proposed, via minor algorithm modifications. Optimality can be proved in the disturbance‐free, finitely generated case. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
995.
996.
997.
The aim of this study was to analyse the physiological strain of firefighters, using heart rate (HR) and core temperature, during real wildfire suppression according to the type of attack performed (direct, indirect or mixed). Three intensity zones were established according to the HR corresponding to the ventilatory threshold (VT) and respiratory compensation threshold (RCT): zone 1, RCT. The exercise workload (training impulse (TRIMP)), the physiological strain index (PSI) and the cumulative heat strain index(CHSI) were calculated using the time spent in each zone, and the HR and core temperature, respectively. Significantly higher mean HR, time spent in Z2 and Z3 and TRIMP h(-1) were found in direct and mixed versus indirect attacks. The highest PSI and CHSI were observed in the direct attack. In conclusion, exercise strain and combined thermal strain, but not core temperature during wildfire suppression, are related to the type of attack performed. STATEMENT OF RELEVANCE: Our findings demonstrated that wildfire firefighting is associated with high physiological demands, which vary significantly depending on the tactics chosen for performing the task. These results should be kept in mind when planning programmes to improve wildland firefighters' physical fitness, which will allow improvement in their performance.  相似文献   
998.
This article presents a generalization of the recently proposed Finite Cell Method to thin-walled structures. This approach uses a combination of well known Fictitious Domain Methods with high order hierarchical Ansatz spaces known from the p-version of the Finite Element Method. Whereas the original concept embeds a three-dimensional structure in a simple domain being meshed into a grid of cube shaped cells, the extension presented in this paper applies the fictitious domain approach to a two-dimensional master domain defined in the parameter plane of the geometric model. Implementation details are discussed and numerical benchmark problems show the high accuracy and computational efficiency of the new approach. It is also remarked, that the present approach can easily be carried over to isogeometric analysis, opening an attractive possibility to simulate trimmed NURBS-surfaces.  相似文献   
999.
In this paper we introduce an hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.  相似文献   
1000.
The transient response of cracked composite materials made of piezoelectric and piezomagnetic phases, when subjected to in-plane magneto-electro-mechanical dynamic loads, is addressed in this paper by means of a mixed boundary element method (BEM) approach. Both the displacement and traction boundary integral equations (BIEs) are used to develop a single-domain formulation. The convolution integrals arising in the time-domain BEM are numerically computed by Lubich’s quadrature, which determines the integration weights from the Laplace transformed fundamental solution and a linear multistep method. The required Laplace-domain fundamental solution is derived by means of the Radon transform in the form of line integrals over a unit circumference. The singular and hypersingular BIEs are numerically evaluated in a precise and efficient manner by a regularization procedure based on a simple change of variable, as previously proposed by the authors for statics. Discontinuous quarter-point elements are used to properly capture the behavior of the extended crack opening displacements (ECOD) around the crack-tip and directly evaluate the field intensity factors (stress, electric displacement and magnetic induction intensity factors) from the computed nodal data. Numerical results are obtained to validate the formulation and illustrate its capabilities. The effect of the combined application of electric, magnetic and mechanical loads on the dynamic field intensity factors is analyzed in detail for several crack configurations under impact loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号