首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   1篇
化学工业   15篇
能源动力   1篇
轻工业   3篇
一般工业技术   5篇
冶金工业   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   9篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1990年   1篇
排序方式: 共有25条查询结果,搜索用时 9 毫秒
11.
Korea Institute of Energy Research (KIER) and Korea Electric Power Corporation Research Institute (KEPCORI) have been developing a CO2 capture technology using dry sorbents. In this study, KEP-CO2P1, a potassium-based dry sorbent manufactured by a spray-drying method, was used. We employed a bench-scale dry-sorbent CO2 capture fluidized-bed process capable of capturing 0.5 ton CO2/day at most. We investigated the sorbent performance in continuous operation mode with solid circulation between a fast fluidized-bed-type carbonator and a bubbling fluidized-bed-type regenerator. We used a slip stream of a real flue gas from 2MWe coal-fired circulating fluidized-bed (CFB) power facilities installed at KIER. Throughout more than 50 hours of continuous operation, the temperature of the carbonator was maintained around 70-80 °C using a jacket-type heat exchanger, while that of the regenerator was kept above 180 °C using an electric furnace. The differential pressure of both the carbonator and regenerator was maintained at a stable level. The maximum CO2 removal was greater than 90%, and the average CO2 removal was about 83% during 50 hours of continuous operation.  相似文献   
12.
13.
Thousands of ppmv of hydrogen sulfide included in coal gas should be reduced to less than a hundred ppmv in the case of IGCC to prevent a gas turbine from being corroded, and few ppmv to prevent the performance of electrodes from declining in the case of MCFC. In the present paper a laboratory scale AEBG (Agitation Fluidized Bed Granulator) is made and improved. The sorbent for the removal of hydrogen sulfide is produced using an agitation fluidized bed granulator (ZnO 1.5 mole+TiO2 l.0mole+bentonite 5.0 wt%). The techniques for fluidizing fine particles, classified in Geldart C group, in a fluidized bed are developed by installing an agitator blade in a fluidized bed granulator. The fine particles are fluidized and granulated successfully by using the techniques. Statistical, spectral and chaos analyses with granulated sorbent (100-300 Μm) are performed to investigate the hydrodynamics of granulates in a fluidized bed. The average absolute deviation, power spectral density functions, phase space trajectories, and Kolmogorov entropy obtained from pressure fluctuation are plotted as a function of fluidizing velocity. It is shown that the Kolmogorov entropy implying the rate of generation of information can be applied to the control of fluidization regimes.  相似文献   
14.
A new type of heavy-atom-affected Pluronic (F-127) nanoparticle (FIC NP) for photodynamic therapy (PDT) is reported. FIC NPs are formulated with biocompatible constituents, and contain densely integrated iodinated aromatic molecules that form a structurally rigid core matrix and stably encapsulate photosensitizers in a monomeric form. Tiny nanoparticles (≈10 nm) are prepared by aqueous dispersion of photosensitizer-embedded aromatic nanodomains, which self-assemble by phase separation from the Pluronic melt mixture. By using spectroscopic studies and cellular experiments, the following is demonstrated: 1) enhanced singlet-oxygen generation by means of the intraparticle heavy-atom effect on the embedded photosensitizer, 2) facilitated cell uptake due to the small nanoscopic size as well as the Pluronic surface characteristics, and thereby 3) actual enhancement of PDT efficacy for a human breast-cancer cell line (MDA-MB-231), which validates a photophysically motivated nanoformulation approach toward an advanced photosensitizing nanomedicine.  相似文献   
15.
A simplified model has been developed to investigate effects of important operating parameters on performance of an entrained-bed absorber and bubbling-bed regenerator system collecting CO2 from flue gas. The particle population balance was considered together with chemical reaction to determine the extent of conversion in both absorber and regenerator. The calculated CO2 capture efficiency agreed with the measured value reasonably well. Effects of absorber parameters — temperature, gas velocity, static bed height, moisture content of feed gas on CO2 capture efficiency — have been investigated in a laboratory scale process. The CO2 capture efficiency decreased as temperature or gas velocity increased. However, it increased with static bed height or moisture concentration. The CO2 capture efficiency was exponentially proportional to each parameter. Based on the absolute value of exponent of the parameter, the effect of gas velocity, static bed height, and moisture content was one-half, one-third, and one-fourth as strong as that of temperature, respectively.  相似文献   
16.
The sintering behavior and dielectric characteristics of a titanium dioxide (TiO2) were investigated by adding CuO. The addition of CuO lowered the sintering temperature of the TiO2. At a given temperature, the densification and grain growth rate for a TiO2 with CuO were enhanced, compared with those of pure TiO2. The results suggest that CuO acts as an activator for the sintering of TiO2. Dielectric constant and loss were also examined for both pure and CuO added TiO2 samples. The variations of dielectric constant and loss were discussed in terms of grain size, porosity, and oxygen deficiency.  相似文献   
17.
The axial voidage profile was measured in a cold model circulating fluidized bed (0.38 m in diameter and 9.1 m in height) of sand particles as bed materials. Voidage in the riser column increases along the height above the distributor plate with increasing the gas velocity. However, it decreases with an increase in solid circulation rate in the bed. Model correlations to predict the solid circulation rale and the axial voidage profile in the bed are proposed.  相似文献   
18.
Mitra  Kanika  Shin  Jung-Ah  Lee  Jeung-Hee  Kim  Seong-Ai  Hong  Soon-Taek  Sung  Chang-Keun  Yang  Dan  Gan  Lu-Jing  Lee  Ki-Teak 《Food science and biotechnology》2011,20(5):1399-1406
In the study, solvent extracts of kamtae (Ecklonia cava) and mao feng tea (Camillia sinensis) were used for obtaining different fractions of organic solvents (diethyl ether, butanol, and ethyl acetate) and the extracted fractions were studied for their antioxidative activities. The total phenolic contents of the mao feng tea ranged from 1.44 to 5.97 mM GAE/g while kamtae ranged from 1.13 to 4.41 mM GAE/g, respectively. Among them, ethyl acetate fraction showed the highest content of phenolic compounds, resulting in Trolox equivalent antioxidant capacity (TEAC) values as 1,554.54 (from mao feng tea) and 1,097.63 mM Trolox E/g (from kamtae). Also, ethyl acetate fractions from mao feng tea showed the highest DPPH (89.27 RSC%), superoxide anion scavenging activity (46.58%), and ferric reducing antioxidant power (FRAP) (242.2 mg GAE/g) while ethyl acetate fractions from kamtae (K-EA) showed the highest DPPH (82.23 RSC%), superoxide anion scavenging activity (28.82%), and FRAP (162.43 mg GAE/g) among the obtained fractions.  相似文献   
19.
The effect of CO2 or steam partial pressure in the regeneration of CO2 solid sorbents was studied in the two-interconnected bubbling fluidized-beds system. Potassium-based dry solid sorbents, which consisted of 35 wt% K2CO3 for CO2 sorption and 65 wt% supporters for mechanical strength, were used. To investigate the CO2 capture efficiency of the regenerated sorbent after the saturated sorbent was regenerated according to the CO2 or steam partial pressure in the regeneration, the mole percentage of CO2 in the regeneration gas was varied from 0 to 50 vol% with N2 balance and that of steam was varied from 0 to 100 vol% with N2 balance, respectively. The CO2 capture efficiency for each experimental condition was investigated for one hour steady-state operation with continuous solid circulation between a carbonator and a regenerator. The CO2 capture efficiency decreased as the partial pressure of CO2 in the fluidization gas of the regenerator increased, while it increased as that of steam increased. When 100 vol% of steam was used as the fluidization gas of the regenerator, the CO2 capture efficiency reached up to 97% and the recovered CO2 concentration in the regenerator was around 95 vol%. Those results were verified during 10-hour continuous experiment.  相似文献   
20.
We report on a successful fabrication of silicon-based single-electron transistors (SETs) with low RC time constant and their applications to complementary logic cells and SET/field-effect transistor (FET) hybrid integrated circuit. The SETs were fabricated on a silicon-on-insulator (SOI) structure by a pattern-dependent oxidation (PADOX) technique, combined with e-beam lithography. Drain conductances measured at 4.2 K approach large values of the order of microsiemens, exhibiting Coulomb oscillations with peak-to-valley current ratios /spl Gt/1000. Data analysis with a probable mechanism of PADOX yields their intrinsic speeds of /spl sim/ 2 THz, which is within an order of magnitude of the theoretical quantum limit. Incorporating these SETs as basic elements, in-plane side gate-controlled complementary logic cells and SET/FET hybrid integrated circuits were fabricated on an SOI chip. Such an in-plane structure is very efficient in the Si fabrication process, and the side gates adjacent to the electron island could easily control the phase of Coulomb oscillations. The input-output voltage transfer, characteristic of the logic cell, shows an inverting behavior where the output voltage gain is estimated to be about 1.2 at 4.2 K. The SET/FET hybrid integrated circuit consisting of one SET and three FETs yields a high-voltage gain and power amplification with a wide-range output window for driving the next circuit. The small SET input gate voltage of 30 mV is finally converted to 400 mV, corresponding to an amplification ratio of 13.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号