Low conversion-loss millimeter-wave fourth subharmonic (SH) mixer designs are proposed in this paper. A millimeter-wave (35 GHz) fourth SH mixer with four open/shorted stubs is designed and measured. The conversion loss is less than 15 dB within a 2.4-GHz bandwidth. The minimum loss is 11.5 dB at the center frequency. By replacing two of the shunt stubs with a dual-frequency in-line stub consisting of newly developed compact microstrip resonating cells (CMRCs), the performance of the SH mixer is improved significantly. At 35 GHz, the conversion loss of this new fourth SH mixer is as low as 6.1 dB with a 3-dB bandwidth of 6 GHz. The conversion loss in the whole Ka-band (26.5-40 GHz) is less than 16 dB. The proposed fourth SH mixer incorporating with CMRCs provides a low-cost high-performance solution for RF subsystem design. 相似文献
A novel transistor oscillator incorporating a compact microstrip resonant cell (CMRC) as its terminating resonance is proposed. Adjusting the dimensions of the cell, it is possible that the fundamental frequency can be positively fed back and the second harmonic negatively fed back at the input port of the oscillator. The fundamental output is enhanced with the second harmonic being suppressed. The output power of the proposed CMRC oscillator is 14.7 dBm at 2.5 GHz with 27.1 dB rejection of the second harmonic, outperforming the conventional microstrip termination with a 40% size reduction 相似文献
Transition metal oxides are capable of a wide range of work functions. This quality allows them to be used in many applications that involve charge transfer with adsorbed molecules, for example as heterogeneous catalysts, as charge‐injection layers in organic electronics, and as electrodes in fuel cells. Chemical and structural factors can alter transition‐metal oxide work functions, often making their work functions difficult to control. Little is known about the effects of the cation oxidation state and point defects on the oxide work function. It is necessary to understand how such chemical and structural factors affect work functions in order to controllably tune transition metal oxides for desired applications. Here, a correlation between the oxide work function and cation oxidation state is demonstrated. This correlation is attributed to the change in cation electronegativity with oxidation state. A model is presented that relates the work function to the oxygen deficiency for d0 oxides in the limit of dilute oxygen vacancies. It is proposed that the rapid initial decrease in work function, observed for d0 oxides, is caused by an increase in the density of donor‐like defect states. It is also shown that oxides tend to have decreased work functions near a metal/metal‐oxide interface as a consequence of the relationship between defects and work function. These insights provide guidelines for tuning transition metal oxide work functions. 相似文献
Memory cost is responsible for a large amount of the chip and/or board area of customized video and image processing system realizations. In this paper, we present a novel technique-founded on data-flow analysis which allows one to address the problem of background memory size evaluation for a given nonprocedural algorithm specification, operating on multidimensional signals with affine indexes. Most of the target applications are characterized by a huge number of signals, so a new polyhedral data-flow model operating on groups of scalar signals is proposed. These groups are obtained by a novel analytical partitioning technique, allowing to select a desired granularity, depending on the application complexity. The method incorporates a way to tradeoff memory size with computational and controller complexity 相似文献
Recently, truthful spectrum auctions have been extensively studied to improve spectrum utilization. Furthermore, privacy preservation in truthful spectrum auctions has also been taken into account. However, existing work mainly focuses on privacy-preserving homogenous spectrum auctions, while the case of heterogeneous spectrum auctions is ignored. In this paper, we propose PATH, a privacy-preserving auction for single-sided heterogeneous spectrum allocations. Through organically combining three security techniques: homomorphic encryption, secret sharing and garbled circuit, PATH reveals nothing about buyers’ bids and identities beyond the auction outcome to any participant party. Specifically, PATH not only maintains the properties of truthfulness and spectrum reuse of the underlining auction mechanism TAMES, but also implements the first provably secure solution for single-sided heterogeneous spectrum auctions. Finally, experimental results demonstrate that PATH incurs only limited computation and communication overhead, and it is feasible for large-scale applications.