首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   881篇
  免费   119篇
  国内免费   3篇
电工技术   35篇
综合类   1篇
化学工业   283篇
金属工艺   20篇
机械仪表   30篇
建筑科学   15篇
能源动力   17篇
轻工业   41篇
水利工程   2篇
无线电   168篇
一般工业技术   267篇
冶金工业   40篇
原子能技术   1篇
自动化技术   83篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   11篇
  2020年   12篇
  2019年   23篇
  2018年   26篇
  2017年   37篇
  2016年   28篇
  2015年   35篇
  2014年   52篇
  2013年   108篇
  2012年   57篇
  2011年   55篇
  2010年   47篇
  2009年   61篇
  2008年   50篇
  2007年   53篇
  2006年   42篇
  2005年   22篇
  2004年   23篇
  2003年   24篇
  2002年   30篇
  2001年   24篇
  2000年   19篇
  1999年   15篇
  1998年   17篇
  1997年   20篇
  1996年   17篇
  1995年   13篇
  1994年   12篇
  1993年   7篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1968年   1篇
  1956年   1篇
  1932年   1篇
排序方式: 共有1003条查询结果,搜索用时 15 毫秒
91.
The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light‐emitting diodes (OLEDs), photovoltaics (OPVs), and field‐effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant‐modified cathodes, hole‐transporting buffer layers, and self‐assembled monolayer (SAM)‐modified anodes are highlighted. In addition to enabling the production of high‐efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source–drain electrode–semiconductor interfaces, dielectric–semiconductor interfaces, and ultrathin dielectrics is shown to allow for high‐performance OFETs.  相似文献   
92.

Background

Nanometer silicon dioxide (nano-SiO2) has a wide variety of applications in material sciences, engineering and medicine; however, the potential cell biological and proteomic effects of nano-SiO2 exposure and the toxic mechanisms remain far from clear.

Results

Here, we evaluated the effects of amorphous nano-SiO2 (15-nm, 30-nm SiO2). on cellular viability, cell cycle, apoptosis and protein expression in HaCaT cells by using biochemical and morphological analysis, two-dimensional differential gel electrophoresis (2D-DIGE) as well as mass spectrometry (MS). We found that the cellular viability of HaCaT cells was significantly decreased in a dose-dependent manner after the treatment of nano-SiO2 and micro-sized SiO2 particles. The IC50 value (50% concentration of inhibition) was associated with the size of SiO2 particles. Exposure to nano-SiO2 and micro-sized SiO2 particles also induced apoptosis in HaCaT cells in a dose-dependent manner. Furthermore, the smaller SiO2 particle size was, the higher apoptotic rate the cells underwent. The proteomic analysis revealed that 16 differentially expressed proteins were induced by SiO2 exposure, and that the expression levels of the differentially expressed proteins were associated with the particle size. The 16 proteins were identified by MALDI-TOF-TOF-MS analysis and could be classified into 5 categories according to their functions. They include oxidative stress-associated proteins; cytoskeleton-associated proteins; molecular chaperones; energy metabolism-associated proteins; apoptosis and tumor-associated proteins.

Conclusions

These results showed that nano-SiO2 exposure exerted toxic effects and altered protein expression in HaCaT cells. The data indicated the alterations of the proteins, such as the proteins associated with oxidative stress and apoptosis, could be involved in the toxic mechanisms of nano-SiO2 exposure.  相似文献   
93.
The morphology and dimension of the conductive filament formed in a memristive device are strongly influenced by the thickness of its switching medium layer. Aggressive scaling of this active layer thickness is critical toward reducing the operating current, voltage, and energy consumption in filamentary‐type memristors. Previously, the thickness of this filament layer has been limited to above a few nanometers due to processing constraints, making it challenging to further suppress the on‐state current and the switching voltage. Here, the formation of conductive filaments in a material medium with sub‐nanometer thickness formed through the oxidation of atomically thin two‐dimensional boron nitride is studied. The resulting memristive device exhibits sub‐nanometer filamentary switching with sub‐pA operation current and femtojoule per bit energy consumption. Furthermore, by confining the filament to the atomic scale, current switching characteristics are observed that are distinct from that in thicker medium due to the profoundly different atomic kinetics. The filament morphology in such an aggressively scaled memristive device is also theoretically explored. These ultralow energy devices are promising for realizing femtojoule and sub‐femtojoule electronic computation, which can be attractive for applications in a wide range of electronics systems that desire ultralow power operation.  相似文献   
94.
Dong  Si-Jia  Ye  Jian  Zhu  Lin  Guo  Li  Moray  Peter Jusu  Liu  Wei-Lai  Sun  Jun  Jen  Tien-Chien 《Journal of Mechanical Science and Technology》2022,36(7):3619-3629
Journal of Mechanical Science and Technology - This investigation is aimed to evaluate thermal effects of the high-velocity particle impingement on the coating quality in CGDS (cold gas dynamic...  相似文献   
95.
Metal hydride (MH) hydrogen storage is used in both mobile and stationary applications. MH tanks can connect directly to high-pressure electrolyzers for on-demand charging, saving compression costs. To prevent high hydrogen pressure during charging, hydrogen generation needs to be controlled with consideration for unknown disturbances and time-varying dynamics. This work presents a robust control system to determine the appropriate mass flow rate of hydrogen, which the water electrolyzer should produce, to maintain the gaseous hydrogen pressure in the tank for the hydriding reaction. A control-oriented model is developed for MH hydrogen storage for control system design purposes. A proportional-integral (PI) and an active disturbance rejection control (ADRC) feedback controllers are investigated, and their performance is compared. Simulation results show that both the PI and ADRC controllers can reject both noises from the output measurements and unknown disturbances associated with the heat exchanger. ADRC excels in eliminating disturbances produced by the input mass flow rate, maintaining the pressure of the tank at the charging pressure with little oscillations. Additionally, the parameters estimated by the ADRC's extended state observer was used to predict the state-of-charge (SOC) of the MH.  相似文献   
96.
97.
This study focused on the mechanical behavior of reinforced lightweight aggregate concrete (RLAC) walls under repeated horizontal loads after a standard temperature‐rising fire‐resistance test and compared the specimen walls' ultimate loads, yielding loads, cracked loads, stiffness, and ductility with those of reinforced normal‐weight aggregate concrete (RNAC) walls. Steel reinforcing bar spacing, aggregate types, wall widths, and high temperatures were variables in this study. The experimental results showed that, after the fire‐resistance test, the smaller the steel reinforcing bar spacing of RLAC walls, the higher the yield and ultimate loads, yet the worse the ductility and the hysteresis loop's energy, whereas the greater the width of the wall, the greater the stiffness and the higher the hysteresis loop's energy. The differences in terms of stiffness, ductility, and hysteresis between RLAC walls with and without the fire‐resistance test were insignificant, indicating that RLAC walls do not lose their basic mechanical behavior during a high‐temperature fire. RNAC walls showed, indeed, a significant downward trend for strength and hysteresis after the fire‐resistance test, but the decrease was much less clear for stiffness. Therefore, RLAC walls did show better seismic resistance than RNAC walls under the same testing conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
98.
In this article, a coplanar‐waveguide (CPW)‐fed dual‐band antenna for applications of the multisystem integration has been demonstrated. The resonance analysis of the stepped‐impedance (SI) monopole is presented by using the transmission‐line analysis method. The frequency‐response characteristics of the SI‐monopole, such as the resonance condition and harmonic response, are systematically summarized. Furthermore, utilizing several simple techniques, such as bent feeding topology, asymmetric ground plane, and an L‐shaped slot etched in the ground plane, a right‐hand circularly polarized (RHCP) radiating wave at 1.57 GHz and a left‐hand circularly polarized (LHCP) radiating wave at 2.33 GHz are excited for the applications of the global positioning system (GPS) and the satellite digital audio radio (SDAR) service system. After optimization of the geometrical parameters of the proposed antenna, the measured impedance bandwidths of a reflection coefficient less than ?10 dB range from 1.40 to 2.98 GHz and from 4.48 to 6.27 GHz, and thus covers most of the commercial wireless communication systems, such as GPS, digital cellular system (DCS), personal communication system (PCS), international mobile telecommunications (IMT)?2000, wireless local area networks (WLAN), and long‐term evolution (LTE) 2300/2600. The measured 3‐dB axial ratio (AR) bandwidths are about 80 MHz at 1.57 GHz and 100 MHz at 2.33 GHz.  相似文献   
99.
This paper studies the design and implementation of a non‐isolated dual‐half‐bridge bidirectional DC‐DC converter for DC micro‐grid system applications. High efficiency can be achieved under wide‐range load variations by the zero‐voltage‐switching features and an adaptive phase‐shift control method. A three‐stage charging scheme is designed to meet the fast‐charging demand and prolong the lifetime of LiFePO4 batteries. A digital‐signal‐processing control IC is used to realize the power flow control, DC‐bus voltage regulation, and battery charging/ discharging of the studied bidirectional DC‐DC converter. Finally, a 10 kW prototype converter with Enhanced Controller Area Network communication function is built and tested for micro‐grid system applications. A light‐load efficiency over 96% and a rated‐load efficiency over 98% can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
100.
Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号