Low‐melting liquid metal is a hugely promising material for flexible conductive patterns due to its excellent conductivity and supercompliance, especially low‐cost and environmental liquid processing technology. However, the ever‐present fluidity characteristic greatly limits the stable shape and reliability of prepared liquid metal conductive electronics. Herein, a novel solidification strategy of liquid GaIn alloys by Ni doping and heat treatment is first reported, which can efficiently create a solid phase in the liquid metal and provide an effective solution for practical applications. Particularly, the liquid characteristic is preserved for conveniently fabricating different flexible electronic circuits, and then the solidification is carried out on prepared conductive patterns by heat treatment. The solidification mechanism is revealed by the interface chemical reaction between Ni and GaIn, creating the solid phase of intermetallic compound (Ga4Ni3 and InNi3) during heat treatment. Moreover, a biphasic GaInNi can be obtained by regulating the atomic ratio of gallium, indium, and nickel. As a result, the obtained GaInNi possesses extremely low sheet resistance (15 ± 4.5 to 135 ± 2.5 mΩ sq?1) and the variation of ΔR/R0 exhibits low level (0–2) when strained up to 100%, which offers a promising strategy to prepare stretchable and reliable liquid metal electronics. 相似文献
The influence of advertising on social networks and its effect on young people’s self-image has been studied. This study first explored the frequency of published videos reposted on social networks using different Application Programming Interfaces as search engines. The study also implemented self-valuation surveys assessed by experts and distributed among mental health professionals who assessed the influence of these social networks. Finally, the survey was designed regarding social networks and body assessment and distributed among Córdoba university students (N = 328). The majority of health professionals concluded that there is an elevated influence of social networks on eating disorders, assessing advertising as a risk factor with a value of 4.60 out of 5. Young people’s perceptions of their body image indicate that women’s degree of satisfaction is highly correlated with the frequency of their connections to social networks, with the body image those women present and with the effect of advertising. Conversely, this high correlation and influence does not exist in men. 相似文献
A specially designed n‐type semiconductor consisting of Ca‐doped ZnO (CZO) nanoparticles is used as the electron transport layer (ETL) in high‐performance multicolor perovskite light‐emitting diodes (PeLEDs) fabricated using an all‐solution process. The band structure of the ZnO is tailored via Ca doping to create a cascade of conduction energy levels from the cathode to the perovskite. This energy band alignment significantly enhances conductivity and carrier mobility in the CZO ETL and enables controlled electron injection, giving rise to sub‐bandgap turn‐on voltages of 1.65 V for red emission, 1.8 V for yellow, and 2.2 V for green. The devices exhibit significantly improved luminance yields and external quantum efficiencies of, respectively, 19 cd A?1 and 5.8% for red emission, 16 cd A?1 and 4.2% for yellow, and 21 cd A?1 and 6.2% for green. The power efficiencies of these multicolor devices demonstrated in this study, 30 lm W?1 for green light‐emitting PeLED, 28 lm W?1 for yellow, and 36 lm W?1 for red are the highest to date reported. In addition, the perovskite layers are fabricated using a two‐step hot‐casting technique that affords highly continuous (>95% coverage) and pinhole‐free thin films. By virtue of the efficiency of the ETL and the uniformity of the perovskite film, high brightnesses of 10 100, 4200, and 16,060 cd m?2 are demonstrated for red, yellow, and green PeLEDs, respectively. The strategy of using a tunable ETL in combination with a solution process pushes perovskite‐based materials a step closer to practical application in multicolor light‐emitting devices. 相似文献
Alkyl chains are basic units in the design of organic semiconductors for purposes of enhancing solubility, tuning electronic energy levels, and tailoring molecular packing. This work demonstrates that the carrier mobilities of indeno[1,2‐b ]fluorene‐6,12‐dione ( IFD )‐based semiconductors can be dramatically enhanced by the incorporation of sulfur‐ or nitrogen‐linked side chains. Three IFD derivatives possessing butyl, butylthio, and dibutylamino substituents are synthesized, and their organic field‐effect transistors (OFET) are fabricated and characterized. The IFD possessing butyl substituents exhibits a very poor charge transport property with mobility lower than 10?7 cm2 V?1 s?1. In contrast, the hole mobility is dramatically increased to 1.03 cm2 V?1 s?1 by replacing the butyl units with dibutylamino groups ( DBA‐IFD ), while the butylthio‐modified IFD ( BT‐IFD ) derivative exhibits a high and balanced ambipolar charge transport property with the maximum hole and electron mobilities up to 0.71 and 0.65 cm2 V?1 s?1, respectively. Moreover, the complementary metal–oxide–semiconductor‐like inverters incorporated with the ambipolar OFETs shows sharp inversions with a maximum gain value up to 173. This work reveals that modification of the aromatic core with heteroatom‐linked side chains, such as alkylthio or dialkylamino, can be an efficient strategy for the design of high‐performance organic semiconductors. 相似文献
In this paper, an electrostatic discharge (ESD) protection circuit is designed for use as a 12 V power clamp by using a parasitic‐diode‐triggered silicon controlled rectifier. The breakdown voltage and trigger voltage (Vt) of the proposed ESD protection circuit are improved by varying the length between the n‐well and the p‐well, and by adding n+/p+ floating regions. Moreover, the holding voltage (Vh) is improved by using segmented technology. The proposed circuit was fabricated using a 0.18‐μm bipolar‐CMOS‐DMOS process with a width of 100 μm. The electrical characteristics and robustness of the proposed ESD circuit were analyzed using transmission line pulse measurements and an ESD pulse generator. The electrical characteristics of the proposed circuit were also analyzed at high temperature (300 K to 500 K) to verify thermal performance. After optimization, the Vt of the proposed circuit increased from 14 V to 27.8 V, and Vh increased from 5.3 V to 13.6 V. The proposed circuit exhibited good robustness characteristics, enduring human‐body‐model surges at 7.4 kV and machine‐model surges at 450 V. 相似文献
Empirical modeling of wireless fading channels using common schemes such as autoregression and the finite state Markov chain (FSMC) is investigated. The conceptual background of both channel structures and the establishment of their mutual dependence in a confined manner are presented. The novel contribution lies in the proposal of a new approach for deriving the state transition probabilities borrowed from economic disciplines, which has not been studied so far with respect to the modeling of FSMC wireless fading channels. The proposed approach is based on equal portioning of the received signal‐to‐noise ratio, realized by using an alternative probability construction that was initially highlighted by Tauchen. The associated statistical procedure shows that a first‐order FSMC with a limited number of channel states can satisfactorily approximate fading. The computational overheads of the proposed technique are analyzed and proven to be less demanding compared to the conventional FSMC approach based on the level crossing rate. Simulations confirm the analytical results and promising performance of the new channel model based on the Tauchen approach without extra complexity costs. 相似文献
In this work, the different elements of a rectenna were optimized for the energy harvesting from Wi-Fi at 2.45 GHz, using the particle swarm optimization method with real or hybrid dimensions depending on the element. The antenna was optimized in different steps and for each one the effect on its performance was determined. For the rectifier, several commercial diodes were compared for evaluating the best selection for this application. Additionally, a low pass filter and an impedance matching of L-section were implemented as coupling elements. The antenna from the novel rectenna had a gain equal to 4.42 dBi due to the incorporation of a pixeled metasurface structure in the ground layer, and a maximum conversion efficiency of 73% with the diode SMS-7630. In this sense, the optimized rectenna presented a better performance than others from the literature for RF energy harvesting at 2.45 GHz. Therefore, the proposed rectenna can be a good alternative as a power supply in nodes of wireless sensor networks with the addition of the DC–DC boost converter LTC3105.
A novel automatic frequency tuning circuit for continuous-time filters is presented. Based on the switched-capacitor technique, the circuit offers an advantage in terms of simplicity resulting from the use of only two matched current sources, an operational amplifier with relaxed specifications and a transconductor that is a replica of the filter transconductors. Despite the simplicity of the scheme, the accuracy of the system is less than 1 % of frequency error. The circuit has been designed in a 0.5 μm CMOS technology with a 3.3 V power supply and simulation results confirm the suitability of the proposed approach. 相似文献
Due to its fast, dynamic, and distributed growth process, it is hard to obtain an accurate map of the Internet. In many cases, such a map-representing the structure of the Internet as a graph with nodes and links-is a prerequisite when investigating properties of the Internet. A common way to obtain such maps is to make certain local measurements at a small subset of the nodes, and then to combine these in order to "discover" (an approximation of) the actual graph. Each of these measurements is potentially quite costly. It is thus a natural objective to minimize the number of measurements which still discover the whole graph. We formalize this problem as a combinatorial optimization problem and consider it for two different models characterized by different types of measurements. We give several upper and lower bounds on the competitive ratio (for the online network discovery problem) and the approximation ratio (for the offline network verification problem) in both models. Furthermore, for one of the two models, we compare four simple greedy strategies in an experimental analysis 相似文献