首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   23篇
电工技术   3篇
综合类   1篇
化学工业   144篇
金属工艺   2篇
机械仪表   4篇
建筑科学   11篇
能源动力   22篇
轻工业   82篇
水利工程   6篇
石油天然气   4篇
无线电   18篇
一般工业技术   64篇
冶金工业   27篇
原子能技术   1篇
自动化技术   49篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   17篇
  2020年   9篇
  2019年   20篇
  2018年   25篇
  2017年   15篇
  2016年   11篇
  2015年   13篇
  2014年   20篇
  2013年   50篇
  2012年   21篇
  2011年   45篇
  2010年   27篇
  2009年   25篇
  2008年   24篇
  2007年   21篇
  2006年   24篇
  2005年   13篇
  2004年   8篇
  2003年   6篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   9篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
排序方式: 共有438条查询结果,搜索用时 218 毫秒
71.
Tea wastes are rich in carbon, nitrogen and potassium but poor in phosphorus, which signifies that they can also be used to reduce metal oxides after they are carbonised. The tea wastes were carbonised at the first stage. The sample, which was put into a ladle with screw cap, was carbonised in a muffle furnace at 400, 500, 600, 700 and 800°C for 30, 60, 90, 120, 240, 360, 720 and 1440?min. It was determined that carbon and sulphur contents of the sample carbonised at 800°C for 1440?min were 94.68 and 0.05%, respectively. Calorific value of the same sample was 8652?cal?g?1. It was found that with increasing temperature, carbon ratio of the carbonised samples increased and their sulphur ratio decreased from 0.39 to 0.05%. The carbonised structure was subjected to the milling process as the second stage. In the milling process, particle size of the carbon-rich sample was brought into nano size and the structure acquired the energy, required for the third stage. The amorphous carbon structure obtained after the milling process was subjected to annealing process at 1400°C as the third stage. As a result of these processes, carbon nanotubes (CNTs), carbon nano-onion structures and amorphous carbon structures were determined in the structure.  相似文献   
72.
Thermal conductivity variations with temperature for solid phases in the Urea (U)–[X] mol pct 4-bromo-2-nitroaniline (BNA) system (X = 0, 2, 45, 89.9, and 100) were measured using the radial heat flow method. From graphs of thermal conductivity variations with temperature, the thermal conductivities of the solid phases at their melting temperature and temperature coefficients for the U–[X] mol pct BNA system (X  =  0, 2, 45, 89.9, and 100) were found to be 0.26, 0.55, 0.46, 0.38, and 0.23 W/Km and 0.007781, 0.005552, 0.002058, 0.002188, and 0.002811 K?1, respectively. The ratios of thermal conductivity of the liquid phase to thermal conductivity of the solid phase in the U–[X] mol pct BNA system (X  =  0, 2, 45, 89.9, and 100) were also measured to be 0.30, 0.44, 0.46, 0.49, and 0.51, respectively, with a Bridgman-type directional solidification apparatus at their melting temperature.  相似文献   
73.
The grain boundary groove shapes for solid neopentylglycol solution (NPG-40 mol pct AMPD) in equilibrium with the neopentylglycol (NPG)–aminomethylpropanediol (AMPD) eutectic liquid (NPG-42.2 mol pct AMPD) have been directly observed using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs–Thomson coefficient (Г) and solid–liquid interfacial energy (σ SL) of solid NPG solution have been determined to be (7.4 ± 0.7) × 10?8 K m and (6.4 ± 1.0) × 10?3 J m?2, respectively. The grain boundary energy of solid NPG solution has been determined to be (12.5 ± 1.0) × 10?3 J m?2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated eutectic liquid to thermal conductivity of solid NPG solution has also been determined to be 0.48.  相似文献   
74.
In this study, (sodium alginate/acrylamide) interpenetrating polymer networks ((NaAlg/AAm)IPN) have been prepared at definite composition. The aqueous solution of 3% (w/v) sodium alginate and 50% (w/v) acrylamide was irradiated with 60Co-γ rays at a dose rate of 0.07 kGy/h up to 5 kGy. The percent conversion was determined gravimetrically and 100% gelation was achieved at 5 kGy dose. To understand whether the semi-interpenetrating polymer network of sodium alginate is performed, Fourier Transform Infrared (FTIR) spectra of polyacrylamide (PAAm), sodium alginate, and the semi-interpenetrating polymer network were recorded. It is found that the FTIR spectra of PAAm, NaAlg, and the semi-interpenetrating polymer network are different. The thermograms of PAAm, sodium alginate, and the semi-interpenetrating polymer network were recorded for investigating their thermal character. (NaAlg/AAm)IPN hydrogels were immersed to swell in a solution of pH 7, at a temperature of 25°C. The swelling results at pH 7.0 indicated that (NaAlg/AAm)IPN hydrogel, containing 3% NaAlg showed maximum % swelling in water but swelling increased in the order of water > Magenta > Methylene Blue > Safranine-O > Methyl Violet. Diffusion of water and aqueous solution of dyes within (NaAlg/AAm)IPN hydrogels was found to be of Fickian character at the initial stage of swelling with regard to values calculated for diffusion coefficient of (NaAlg/AAm)IPN hydrogels in water and aqueous solution of dyes. Some diffusion parameters were calculated from swelling of (NaAlg/AAm)IPN in water and dyes and their adsorption isotherms were plotted. In the adsorption experiments, the efficiency of (NaAlg/AAm)IPN hydrogels to adsorb Magenta, Safranine-O, Methylene Blue, and Methyl Violet dyes from water was studied. (NaAlg/AAm)IPN hydrogels showed different adsorption for different aqueous solution of dyes at pH 7.0. Adsorption isotherms were constructed for (NaAlg/AAm)IPN-dye systems. S type adsorption in the Giles classification system was found. Thermal and spectroscopic characterization of semi-interpenetrating polymer network of sodium alginate and acrylamide and dye adsorbed semi-interpenetrating polymer network of sodium alginate and acrylamide was recorded. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
75.
Melt intercalation method was applied to produce acrylonitrile‐butadiene‐styrene/polyamide‐6 (ABS/PA6) blends based organoclay nanocomposites using a conical twin‐screw microcompounder. The blend was compatibilized using a maleated olefinic copolymer. The effects of microcompounding conditions such as screw speed, screw rotation‐mode (co‐ or counter‐), and material parameters such as blend composition and clay loading level on the morphology of the blends, dispersibility of nanoparticles, and mechanical properties were investigated. Furthermore, corotating screws were modified to achieve elongational flow which is efficient for obtaining dispersive mixing. The morphology was examined by SEM analysis after preferential extraction of the minor phase. Subsequently, the SEM micrographs were quantitatively analyzed using image analyzer software. The morphology of the blends indicated that processing with counter‐rotation at a given screw speed yielded coarser morphology than that of processed with corotation. X‐ray diffraction analysis showed that highest level of exfoliation is observed with increasing PA6 content, at 200 rpm of screw speed and in corotation mode. Also, the effects of screw speed, screw rotation mode, and screw modification were discussed in terms of XRD responses of the nanocomposites. The aspect ratio of the clay particles which were measured by performing image analysis on TEM micrographs exhibited a variation with processing conditions and they are in accordance with the modulus of the nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
76.
Modified polystyrene with Pt(IV)–azomethine (APS–Sch–Pt) was synthesized by means of condensation and demonstrated to be a promising enzyme support by studying the enzymatic properties of glucose oxidase enzyme (GOx) immobilized on it. The characteristics of the immobilized glucose oxidase (APS–Sch–Pt–GOx) enzyme showed two optimum pH values that were pH = 4.0 and pH = 7. The insertion of stable Pt(IV)–azomethine spacers between the polystyrene backbone and the immobilized GOx, (APS–Sch–Pt–GOx), increases the enzymes’ activity and improves their affinity towards the substrate even at pH = 4. The influence of temperature, reusability and storage capacity on the free and immobilized glucose oxidase enzyme was investigated. The storage stability of the immobilized glucose oxidase was shown to be eleven months in dry conditions at +4 °C.  相似文献   
77.
Malondialdehyde (MDA) is a biomarker of lipid peroxidation and is present in foods and biological samples such as plasma. A high‐performance liquid chromatography (HPLC) method was applied to determine MDA in fish liver samples after derivatization with 2,4‐dinitrophenylhydrazine (DNPH) using a ODS2 column (10 cm × 4.6 mm, 3 μm) and a photodiode array detector. The mobile phase consisted of 0.2% acetic acid (v/v) in distilled water and acetonitrile (42:58, v/v). The present method was validated in terms of linearity, lower limit of quantification, lower limit of detection, precision, accuracy, recovery, and stability of MDA according to U.S. Food and Drug Administration (FDA) guidelines. The limit of quantification of MDA was 0.39 μmol/L, which is comparable to other methods. The recovery of the spiked MDA liver samples was in the range of 92.4% to 104.2%. This newly modified HPLC method is specific, sensitive, and accurate and allows the analysis of MDA within 4 min in fish liver but also in other tissues and plasma.  相似文献   
78.
The effects of fat content and emulsifier type on the rheological properties of cake batter have been investigated by using a parallel-plate rheometer. The apparent viscosity of cake batter with five different fat concentrations (0, 12.5, 25, 37.5, and 50%) and two types of emulsifier, namely Purawave and Lecigran, was studied as a function of the shear rate. In addition, the time dependency of different cake formulations was investigated. It was found that cake batter with different fat concentrations and emulsifier types exhibited shear thinning and time-independent behavior. Experimental data provided a good fit for the power law model. The increase in fat content and addition of emulsifier caused a decrease in the apparent viscosity. The flow behavior index was not found to be dependent on the composition of cake batter.  相似文献   
79.
In the present study, inhibitory effects of the hydrosols of thyme, black cumin, sage, rosemary and bay leaf were investigated against Salmonella Typhimurium and Escherichia coli O157:H7 inoculated to apple and carrots (at the ratio of 5.81 and 5.81 log cfu/g for S. Typhimurium, and 5.90 and 5.70 log cfu/g for E. coli O157:H7 on to apple and carrot, respectively). After the inoculation of S. Typhimurium or E. coli O157:H7, shredded apple and carrot samples were washed with the hydrosols and sterile tap water (as control) for 0, 20, 40 and 60 min. While the sterile tap water was ineffective in reducing (P > 0.05) S. Typhimurium and E. coli O157:H7, 20 min hydrosol treatment caused a significant (P < 0.05) reduction compared to the control group. On the other hand, thyme and rosemary hydrosol treatments for 20 min produced a reduction of 1.42 and 1.33 log cfu/g respectively in the E. coli O157:H7 population on apples. Additional reductions were not always observed with increasing treatment time. Moreover, thyme hydrosol showed the highest antibacterial effect on both S. Typhimurium and E. coli O157:H7 counts. Inhibitory effect of thyme hydrosol on S. Typhimurium was higher than that for E. coli O157:H7. Bay leaf hydrosol treatments for 60 min reduced significantly (P < 0.05) E. coli O157:H7 population on apple and carrot samples. In conclusion, it was shown that plant hydrosols, especially thyme hydrosol, could be used as a convenient sanitizing agent during the washing of fresh-cut fruits and vegetables.  相似文献   
80.
Vacuum-sealed cavities featuring diamond membranes are fabricated using plasma-activated direct bonding technology. A chemical mechanical polished (CMP) silicon dioxide interlayer, deposited on diamond with a high temperature oxide (HTO) process at 850 °C in a low pressure chemical vapor deposition (LPCVD) furnace, is employed for successful direct bonding and vacuum cavity formation. The circular cavities are defined on the thermally grown oxide of the phosphorus-doped Si wafer (4-in, < 100>, 1.2 Ω/sq) using reactive ion etching (RIE). The same microfabrication steps are applied for low residual stress (i.e. < 50 MPa) nanocrystalline (NCD) and ultrananocrystalline (UNCD) diamonds to determine and compare membrane characteristics. For both diamond types, successful microfabrication of membranes is demonstrated using the optimized process flow. Profilometer measurements of membrane deflection are compared with finite element modeling (FEM), and indicate a Young's modulus of 1000 GPa for NCD and 850 GPa for UNCD. Furthermore, FEM analysis suggests the residual stress of UNCD membrane is approximately 100 MPa tensile, whereas NCD one does not show any significant residual stress (< 50 MPa). Our results show that NCD is a more promising choice than UNCD as a membrane material for electromechanical transducers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号