首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18504篇
  免费   2176篇
  国内免费   6篇
电工技术   1391篇
综合类   410篇
化学工业   8912篇
金属工艺   276篇
机械仪表   403篇
建筑科学   686篇
矿业工程   171篇
能源动力   133篇
轻工业   1874篇
水利工程   122篇
石油天然气   68篇
无线电   471篇
一般工业技术   3069篇
冶金工业   497篇
原子能技术   35篇
自动化技术   2168篇
  2023年   622篇
  2022年   309篇
  2021年   665篇
  2020年   664篇
  2019年   576篇
  2018年   556篇
  2017年   402篇
  2016年   624篇
  2015年   797篇
  2014年   830篇
  2013年   1419篇
  2012年   571篇
  2011年   458篇
  2010年   792篇
  2009年   951篇
  2008年   449篇
  2007年   441篇
  2006年   314篇
  2005年   306篇
  2004年   266篇
  2003年   231篇
  2002年   152篇
  1998年   263篇
  1997年   192篇
  1996年   239篇
  1995年   220篇
  1994年   185篇
  1993年   260篇
  1992年   174篇
  1990年   173篇
  1989年   197篇
  1988年   157篇
  1987年   183篇
  1986年   203篇
  1985年   190篇
  1984年   184篇
  1983年   195篇
  1982年   175篇
  1981年   219篇
  1980年   179篇
  1979年   186篇
  1977年   177篇
  1976年   181篇
  1975年   218篇
  1974年   204篇
  1973年   380篇
  1972年   224篇
  1971年   164篇
  1970年   152篇
  1968年   157篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
Trimethyl lock (TML) systems are based on ortho‐hydroxydihydrocinnamic acid derivatives displaying increased lactonization reactivity owing to unfavorable steric interactions of three pendant methyl groups, and this leads to the formation of hydrocoumarins. Protection of the phenolic hydroxy function or masking of the reactivity as benzoquinone derivatives prevents lactonization and provides a trigger for controlled release of molecules attached to the carboxylic acid function through amides, esters, or thioesters. Their easy synthesis and possible chemical adaption to several different triggers make TML a highly versatile module for the development of drug‐delivery systems, prodrug approaches, cell‐imaging tools, molecular tools for supramolecular chemistry, as well as smart stimuliresponsive materials.  相似文献   
952.
Bioorthogonal chemistry can be used for the selective modification of biomolecules without interfering with any other functionality that might be present. Recent developments in the field include orthogonal bioorthogonal reactions to modify multiple biomolecules simultaneously. During our research, we observed that the reaction rates for the bioorthogonal inverse‐electron‐demand Diels–Alder (iEDDA) reactions between nonstrained vinylboronic acids (VBAs) and dipyridyl‐s‐tetrazines were exceptionally higher than those between VBAs and tetrazines bearing a methyl or phenyl substituent. As VBAs are mild Lewis acids, we hypothesised that coordination of the pyridyl nitrogen atom to the boronic acid promoted tetrazine ligation. Herein, we explore the molecular basis and scope of VBA–tetrazine ligation in more detail and benefit from its unique reactivity in the simultaneous orthogonal tetrazine labelling of two proteins modified with VBA and norbornene, a widely used strained alkene. We further show that the two orthogonal iEDDA reactions can be performed in living cells by labelling the proteasome by using a nonselective probe equipped with a VBA and a subunit‐selective VBA bearing a norbornene moiety.  相似文献   
953.
Although genome mining has advanced the identification, discovery, and study of microbial natural products, the discovery of bacterial diterpenoids continues to lag behind. Herein, we report the identification of 66 putative producers of novel bacterial diterpenoids, and the discovery of the tiancilactone (TNL) family of antibiotics, by genome mining of type II diterpene synthases that do not possess the canonical DXDD motif. The TNLs, which are broad‐spectrum antibiotics with moderate activities, are produced by both Streptomyces sp. CB03234 and Streptomyces sp. CB03238 and feature a highly functionalized diterpenoid skeleton that is further decorated with chloroanthranilate and γ‐butyrolactone moieties. Genetic manipulation of the tnl gene cluster resulted in TNL congeners, which provided insights into their biosynthesis and structure–activity relationships. This work highlights the biosynthetic potential that bacteria possess to produce diterpenoids and should inspire continued efforts to discover terpenoid natural products from bacteria.  相似文献   
954.
The CYP171 enzyme is known to catalyse a key step in the steroidogenesis of mammals. The substrates progesterone and pregnenolone are first hydroxylated at the C17 position, and this is followed by cleavage of the C17?C20 bond to yield important precursors for glucosteroids and androgens. In this study, we focused on the reaction of the bovine CYP17A1 enzyme with progesterone as a substrate. On the basis of a created homology model, active‐site residues were identified and systematically mutated to alanine. In whole‐cell biotransformations, the importance of the N202, R239, G297 and E305 residues for substrate conversion was confirmed. Additionally, mutation of the L206, V366 and V483 residues enhanced the formation of the 16α‐hydroxyprogesterone side product up to 40 % of the total product formation. Furthermore, residue L105 was found not to be involved in this side activity, which contradicts a previous study with the human enzyme.  相似文献   
955.
956.
957.
4‐Anilinoquinolines were identified as potent and narrow‐spectrum inhibitors of the cyclin G associated kinase (GAK), an important regulator of viral and bacterial entry into host cells. Optimization of the 4‐anilino group and the 6,7‐quinoline substituents produced GAK inhibitors with nanomolar activity, over 50 000‐fold selectivity relative to other members of the numb‐associated kinase (NAK) subfamily, and a compound (6,7‐dimethoxy‐N‐(3,4,5‐trimethoxyphenyl)quinolin‐4‐amine; 49 ) with a narrow‐spectrum kinome profile. These compounds may be useful tools to explore the therapeutic potential of GAK in prevention of a broad range of infectious and systemic diseases.  相似文献   
958.
Cancer continues to be a worldwide health problem. Certain macrocyclic molecules have become attractive therapeutic alternatives for this disease because of their efficacy and, frequently, their novel mechanisms of action. Herein, we report the synthesis of a series of 20‐, 21‐, and 22‐membered macrocycles containing triazole and bis(aryl ether) moieties. The compounds were prepared by a multicomponent approach from readily available commercial substrates. Notably, some of the compounds displayed interesting cytotoxicity against cancer (PC‐3) and breast (MCF‐7) cell lines, especially those bearing an aliphatic or a trifluoromethyl substituent on the N‐phenyl moiety (IC50<13 μm ). Additionally, some of the compounds were able to induce apoptosis relative to the solvent control; in particular, (Z)‐N‐cyclohexyl‐7‐oxo‐6‐[4‐(trifluoromethyl)phenyl]‐11H‐3,10‐dioxa‐6‐aza‐1(4,1)‐triazola‐4(1,3),9(1,4)‐dibenzenacyclotridecaphane‐5‐carboxamide ( 12 f ) was the most potent in this regard (22.7 % of apoptosis).  相似文献   
959.
Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)‐(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine‐phosphorylation‐regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号