首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   22篇
电工技术   5篇
化学工业   48篇
金属工艺   13篇
机械仪表   2篇
建筑科学   4篇
能源动力   13篇
轻工业   48篇
无线电   12篇
一般工业技术   22篇
冶金工业   11篇
自动化技术   12篇
  2024年   1篇
  2023年   1篇
  2022年   11篇
  2021年   12篇
  2020年   6篇
  2019年   7篇
  2018年   17篇
  2017年   5篇
  2016年   14篇
  2015年   5篇
  2014年   4篇
  2013年   16篇
  2012年   16篇
  2011年   20篇
  2010年   7篇
  2009年   11篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
71.
Spherical, submicronic TiO2 powder particles were prepared in the low temperature process of ultrasonic spray pyrolysis (150 °C) by using as a precursor aqueous colloidal solutions consisting of surface modified 45 Å TiO2 nanoparticles with dopamine. Detailed structural and morphological characterization of colored submicronic TiO2 spheres was performed by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analysis and FTIR techniques. Also, optical characterization of both dopamine-modified TiO2 precursor nanoparticles and submicronic TiO2 powder particles was performed using absorption and diffuse reflectance spectroscopy, respectively. A significant decrease of the effective band gap (1.9 eV) in dopamine-modified TiO2 nanoparticles compared to the band gap of bulk material (3.2 eV) was preserved after formation of submicronic TiO2 powder particles in the process of ultrasonic spray pyrolysis under mild experimental conditions. Due to the nanostructured nature, surface-modified assemblage of TiO2 nanoparticles preserved unique ability to absorb light through charge transfer complex by photoexcitation of the ligand-to-TiO2 band, conventionally associated with extremely small TiO2 nanoparticles (d < 20 nm) whose surface Ti atoms, owing to the large curvature, have penta-coordinate geometry.  相似文献   
72.
There is inadequate published data referring to bioactivity of lemon balm tea and its Kombucha. The aim of this study, therefore, was to investigate antimicrobial, antiproliferative, genotoxic, and antigenotoxic potential of lemon balm tea and its Kombucha with consuming acidity. Antimicrobial activity was determined by agar-well diffusion method. Cell growth effects were determined in HeLa, MCF7, and HT-29 human tumor cell lines. Genotoxic and antigenotoxic effects were determined using chromosome aberration assay in Chinese hamster cell line CHO-K1. Differences between control and treated groups were evaluated using analysis of variance, at significance level of p < 0.05. Kombucha from lemon balm tea (Melissa officinalis L.) exibited antimicrobial activity against prokaryotic microorganisms independently of their cell wall structure (both Gram-positive and Gram-negative bacteria), while there was no observed activity against eukaryots (yeasts and moulds). There was absence of genotoxic effects while antigenotoxic effects of lemon balm Kombucha and tea were confirmed on MMC-damaged CHO-K1 cells. For the explanation of cell growth effects that were not concentration dependent, concept of hormesis was used. Antiproliferative activity was lower compared with traditional Kombucha and Satureja montana L. Kombucha, with lemon balm tea showing higher activity than its Kombucha.  相似文献   
73.
Antifungal activity of Allium tuberosum (AT), Cinnamomum cassia (CC), and Pogostemon cablin (Patchouli, P) essential oils against Aspergillus flavus strains 3.2758 and 3.4408 and Aspergillus oryzae was tested at 2 water activity levels (aw: 0.95 and 0.98). Main components of tested essential oils were: allyl trisulfide 40.05% (AT), cinnamaldehyde 87.23% (CC), and patchouli alcohol 44.52% (P). The minimal inhibitory concentration of the plant essential oils against A. flavus strains 3.2758 and 3.4408 and A. oryzae was 250 ppm (A. tuberosum and C. cassia), whereas Patchouli essential oil inhibited fungi at concentration > 1500 ppm. The essential oils exhibited suppression effect on colony growth at all concentrations (100, 175, and 250 ppm for A. tuberosum; 25, 50, and 75 for C. cassia; 100, 250, and 500 for P. cablin essential oil). Results of the study represent a solution for possible application of essential oil of C. cassia in different food systems due to its strong inhibitory effect against tested Aspergillus species. In real food system (table grapes), C. cassia essential oil exhibited stronger antifungal activity compared to cinnamaldehyde.  相似文献   
74.
Two series of nanoclay reinforced, thermoresponsive hydrogels were prepared, one based on poly(N‐isopropylacrylamide) (PNIPA) and the other on semi‐interpenetrating networks containing PNIPA and poly(N‐vinyl pyrrolidone) (PVP), designated as SIPNs. The gels were crosslinked with 1, 3, and 5 wt % inorganic clay (hectorite) and SIPN gels additionally contained 1 wt % of PVP. The hydrogels were tested in the “as‐prepared state,” i.e., at 10 wt % PNIPA concentration in water and at equilibrium (maximum) swelling. Increasing the concentration of nanoclays increases crosslink density, modulus, tensile strength, elongation (except in equilibrium swollen gels), hysteresis and with decreases in the degree of swelling, broadening of the phase transition region, and a decrease in elastic recovery at high deformations. The presence of linear PVP in the networks increases porosity and the pore size, increases swelling, deswelling rates, and hysteresis, but decreases slightly lower critical solution temperature (LCST), tensile strength, elongation, and elastic recovery. The strongest hydrogels were ones with 10 wt % PNIPA and 5 wt % of nanoclays, displaying tensile strengths of 85 kPa and elongation of 955%. All properties of hydrogels at the equilibrium swollen state are lower than in the as‐prepared state, due to the lower concentration of chains per unit volume, but the trends are preserved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
75.
The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of −40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078–0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.  相似文献   
76.
77.
We report an ultra-low-voltage RF receiver for applications in the 2.4 GHz band, designed in a 90 nm CMOS technology. The sliding-IF receiver prototype includes an LNA, an image-reject LC filter with single-ended to differential conversion, an RF mixer, an LC IF filter, a quadrature IF mixer, RF and IF LO buffers, and an I/Q baseband section with a VGA and a low-pass channel-select filter in each path, all integrated on-chip. It has a programmable overall gain of 30 dB, noise figure of 18 dB, out-of-channel IIP3 of -22 dBm. The 3.4 mm2 chip consumes 8.5 mW from a 0.5 V supply.  相似文献   
78.
Buckwheat has a strong characteristic aroma, but its phytochemical background has not yet been fully elucidated. The aims of this study were identification and quantification of individual compounds responsible for the buckwheat aroma. Volatiles from a freshly ground buckwheat flour were extracted by different methods: direct extraction with petroleum ether, pentane or methanol, distillation with Clevenger apparatus and a headspace solid-phase microextraction method. The extracts were analysed by GC–MS with electron ionisation. Compounds were identified by MS and by comparison of retention times with reference compounds. Direct extraction with methanol and distillation proved to be very efficient. In these extracts twenty-five and thirty-five compounds were identified, respectively. The first extract contained more hydrophilic compounds and the latter more volatile compounds. Most of the compounds were quantified and their odour activity value (OAV) calculated. Only two compounds (salicylaldehyde and phenylacetaldehyde) were found in both extracts. The compounds with the highest contribution to the buckwheat aroma were: 2,5-dimethyl-4-hydroxy-3(2H)-furanone, (E,E)-2,4-decadienal, phenylacetaldehyde, 2-methoxy-4-vinylphenol, (E)-2-nonenal, decanal, hexanal and salicylaldehyde (2-hydroxybenzaldehyde).  相似文献   
79.
The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号