首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   893篇
  免费   33篇
  国内免费   8篇
电工技术   44篇
综合类   7篇
化学工业   186篇
金属工艺   14篇
机械仪表   31篇
建筑科学   55篇
矿业工程   2篇
能源动力   80篇
轻工业   94篇
水利工程   22篇
石油天然气   18篇
无线电   65篇
一般工业技术   113篇
冶金工业   48篇
原子能技术   3篇
自动化技术   152篇
  2024年   8篇
  2023年   18篇
  2022年   25篇
  2021年   49篇
  2020年   54篇
  2019年   68篇
  2018年   65篇
  2017年   60篇
  2016年   63篇
  2015年   32篇
  2014年   66篇
  2013年   100篇
  2012年   65篇
  2011年   55篇
  2010年   45篇
  2009年   30篇
  2008年   26篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   19篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有934条查询结果,搜索用时 15 毫秒
151.
The effect of copper(II) ions (Cu(+2)) on the structure of β-lactoglobulin (β-lg) was investigated spectroscopically using UV-visible, fluorescence and circular dichroism (CD) and calorimetrically using isothermal titration calorimetry (ITC), at different temperatures. Results of the UV-visible studies showed that adding Cu(+2) to β-lg solution caused increasing turbidity, indicative of protein aggregation. It was noticeable that the rate of increasing turbidity was directly proportional to increasing temperature. The far-UV CD studies displayed that the Cu(+2) cannot induce any significant changes in the secondary structures of β-lg at different temperatures. Also, the ITC data indicated that the binding process of Cu(+2) to β-lg is mainly entropically driven. The results highlight that copper ions cause the tertiary structure of β-lg to change and induce a slightly open structure leading to the formation of supramolecular aggregates in β-lg which may result in the reduced allergenicity of β-lg and its increased use in industrial applications.  相似文献   
152.
Food Science and Biotechnology - Maillard-based conjugation may be a useful way of improving the functional properties of food biopolymers. In this study, covalent attachment of fish gelatin (FG)...  相似文献   
153.
It is difficult to achieve controlled cutting of elastic, mechanically fragile, and rapidly resealing mammalian cell membranes. Here, we report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized explosive vapor bubble, which rapidly punctures a lightly contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The cavitation bubble pattern is controlled by the metallic structure configuration and laser pulse duration and energy. Integration of the metallic nanostructure with a micropipet, the nanoblade generates a micrometer-sized membrane access port for delivering highly concentrated cargo (5 × 10(8) live bacteria/mL) with high efficiency (46%) and cell viability (>90%) into mammalian cells. Additional biologic and inanimate cargo over 3-orders of magnitude in size including DNA, RNA, 200 nm polystyrene beads, to 2 μm bacteria have also been delivered into multiple mammalian cell types. Overall, the photothermal nanoblade is a new approach for delivering difficult cargo into mammalian cells.  相似文献   
154.
To determine the relationship between quantitative Doppler parameters of portal, hepatic, and splanchnic circulation and hepatic venous pressure gradient (HVPG), variceal size, and Child-Pugh class in patients with alcoholic cirrhosis, we studied forty patients with proved alcoholic cirrhosis who underwent Doppler ultrasonography, hepatic vein catheterization, and esophagoscopy. The following Doppler parameters were recorded: time-averaged mean blood velocity, volume flow of the main portal vein flow, and resistance index (RI) of the hepatic and of the superior mesenteric artery. Doppler findings were compared with HVPG, presence and size of esophageal varices, and Child-Pugh class. There was a significant inverse correlation between portal velocity and HVPG (r = -.69), as well as between portal vein flow and HVPG (r = -.58). No correlation was found between RI in the hepatic artery or superior mesenteric artery and HVPG. No correlation was found between portal vein measurements and presence and size of varices. Severe liver failure was associated with lower portal velocity and flow. In patients with alcoholic cirrhosis, only portal vein blood velocity and flow, but neither hepatic nor mesenteric artery RI, are correlated to the severity of portal hypertension and to the severity of liver failure.  相似文献   
155.
156.
Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography–mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health.  相似文献   
157.
    
Campylobacter spp. genera is one of the most common causes of microbial enteritis worldwide. The objective of this work was to investigate the antimicrobial resistance (AMR) patterns, virulence genes, and genetic variation of thermophilic Campylobacter species collected from chicken meat samples in Iran. A total of 255 meat specimens were taken and transferred to the laboratory. Culture methods were utilized to identify the Campylobacter genus, and PCR and sequencing were performed to confirm the organisms. Antimicrobial susceptibility evaluation was performed using broth microdilution for six antimicrobials [ciprofloxacin (CIP), nalidixic acid (NAL), sitafloxacin (SIT), erythromycin (ERY), tetracycline (TET), and gentamicin (GEN)]. By using PCR, AMR and virulence genes were detected. The detection rate of Campylobacter spp. was 64 (25.09%) out of 255 meat samples, with C. jejuni and C. coli accounting for 41 (64.06%) and 14 (21.87%), respectively. Other Campylobacter isolates accounted for 14.06% of the total (nine samples). The antibiotic susceptibility of all Campylobacter isolates was tested using six antibiotics, and all (100%) were resistant to CIP and NAL. However, TET resistance was observed in 93.9% and 83.3% of C. jejuni and C. coli isolates, respectively. Four (8.2%) C. jejuni isolates were multidrug-resistant (MDR), while none of the C. coli isolates were MDR. Two of the four MDR isolates were resistant to CIP, NAL, TET, and ERY, whereas the other two isolates were resistant to CIP, NAL, TET, and GEN. The values of the Minimum Inhibitory Concentration (MIC) were as follows: CIP, 64–256 μg/ml; NAL, 128–512 μg/ml; TET, 2–1024 μg/ml; SIT, 0.25–1 μg/ml; ERY, 1–32 μg/ml; and GEN, 1–256 μg/ml. recR, dnaJ, cdtC, cdtB, cdtA, flaA, ciaB, cadF, and pidA were discovered in more than 50% of C. jejuni isolates, although wlaN, virbll, cgtB, and ceuE were found in <50%. flaA, cadF, pidA, and ciaB were discovered in more than 50% of the C. coli samples, whereas recR, cdtC, cdtB, cdtA, and cgtB were found in less than half. For C. coli, the percentages for wlaN, dnaJ, virbll, and ceuE were all zero. The results of this study show Campylobacter isolates obtained from poultry have higher resistance to quinolones and TET, pathogenicity potential, and varied genotypes.  相似文献   
158.
    
The aim of this study was the discrimination and optimization of irradiation effect under physical and mechanical experiments on garlic. The samples were irradiated with 0, 75, and 150 Gy doses and stored at 4 and 18°C for 5 months. Physical, mechanical, and color properties were measured in the period of storage. Based on the results, all irradiated garlic samples had less quality variation than control samples. Response surface methodology (RSM) optimized dose, storage time, and temperature of the stored garlic which was 75 Gy, 2 months, and 17°C, respectively. In addition, after finding the optimal dose, time, and temperature, the most effective factor as weight loss was obtained and the data were classified by the principal component analysis (PCA) approach. The results showed that the PCA method had a high ability to classify and separate the data obtained from measuring the physicochemical properties of garlic and cover 99% variance of data. Moreover, partial least square (PLS) was applied for predicting weight loss data with R2 0.9999. As well, a mechanical test was investigated for finding the best situation and duration of storage condition. Finally, irradiation prevented the destruction of garlic and saved garlic in the best quality as compared with control or nonirradiated samples. After all this, it can be decided to keep garlic in warehouses and transfer this product with minimum damage.  相似文献   
159.
    
Improper interparticle connection between carbon-based materials, poor interface bonding between the carbon counter electrodes (CEs) and substrate, and low surface area are the main limitations of carbon-based CEs in dye-sensitized solar cells. In this study, we utilized foamed cement and binder for adherence and surface area improvement in carbon-based CEs, such as graphite, multi-walled carbon nanotubes, and carbon black (CB). The results revealed that incorporating foamed cement into carbon materials improved the resistance, short-circuit current density, fill factor, and power conversion efficiency of the device. The porous cement/CB nanocomposite CE with a photoconversion efficiency of 5.51% exhibited the best photovoltaic performance. Moreover, this nanocomposite electrode showed an enhancement catalytic activity by high current density in cyclic voltammogram, low charge transfer resistance ( R C T $({R}_{CT}$ ) in electrochemical impedance spectroscopy, and high exchange current density in Tafel measurements compared to other electrodes. The porosity of foamed cement has been found to be the main cause of its superior photovoltaic performance, which expands the contact area with the electrode and enables rich ion transport. Additionally, the enhanced performance was due to strong bonding, crack-free deposited films, superior conductivity, and high catalytic activity.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号