首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   20篇
电工技术   5篇
化学工业   92篇
金属工艺   13篇
机械仪表   7篇
建筑科学   18篇
能源动力   2篇
轻工业   53篇
无线电   19篇
一般工业技术   54篇
冶金工业   9篇
原子能技术   3篇
自动化技术   33篇
  2023年   7篇
  2022年   13篇
  2021年   8篇
  2020年   4篇
  2019年   11篇
  2018年   13篇
  2017年   5篇
  2016年   18篇
  2015年   14篇
  2014年   19篇
  2013年   23篇
  2012年   18篇
  2011年   29篇
  2010年   24篇
  2009年   18篇
  2008年   19篇
  2007年   16篇
  2006年   12篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
31.
The fundamental macroscopic material property needed to quantify the flow in a fibrous medium viewed as a porous medium is the permeability. Composite processing models require the permeability as input data to predict flow patterns and pressure fields. As permeability reflects both the magnitude and anisotropy of the fluid/fiber resistance, efficient numerical techniques are needed to solve linear and nonlinear homogenization problems online during the flow simulation. In a previous work the expressions of macroscopic permeability were derived in a double-scale porosity medium for both Newtonian and rheo-thinning resins. In the linear case only a microscopic calculation on a representative volume is required, implying as many microscopic calculations as representative microscopic volumes exist in the whole fibrous structure. In the non-linear case, and even when the porous microstructure can be described by a unique representative volume, microscopic calculation must be carried out many times because the microscale resin viscosity depends on the macroscopic velocity, which in turn depends on the permeability that results from a microscopic calculation. Thus, a nonlinear multi-scale problem results. In this paper an original and efficient offline-online procedure is proposed for the efficient solution of nonlinear flow problems in porous media.  相似文献   
32.
The first results on a simple new process for the direct fabrication of one-dimensional superlattices using common CVD chambers are presented. The experiments were carried out in a 200?mm industrial Centura reactor (Applied Materials). Low dimensionality and superlattices allow a significant increase in the figure of merit of thermoelectrics by controlling the transport of phonons and electrons. The monocrystalline nanowires produced according to this process are both one-dimensional and present heterostructures, with very thin layers (40?nm) of Si and SiGe. Concentrations up to 30?at.% Ge were obtained in the SiGe parts. Complementary techniques including transmission electronic microscopy (TEM), selected area electron diffraction (SAED), energy dispersive x-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM) in bright field and high angle annular dark field (HAADF STEM), and energy-filtered transmission electron microscopy (EF-TEM) were used to characterize the nanoheterostructures.  相似文献   
33.
Amyloid‐β peptides (Aβ) and the protein human serum albumin (HSA) interact in vivo. They are both localised in the blood plasma and in the cerebrospinal fluid. Among other functions, HSA is involved in the transport of the essential metal copper. Complexes between Aβ and copper ions have been proposed to be an aberrant interaction implicated in the development of Alzheimer's disease, where Cu is involved in Aβ aggregation and production of reactive oxygen species (ROS). In the present work, we studied copper‐exchange reaction between Aβ and HSA or the tetrapeptide DAHK (N‐terminal Cu‐binding domain of HSA) and the consequence of this exchange on Aβ‐induced ROS production and cell toxicity. The following results were obtained: 1) HSA and DAHK removed CuII from Aβ rapidly and stoichiometrically, 2) HSA and DAHK were able to decrease Cu‐induced aggregation of Aβ, 3) HSA and DAHK suppressed the catalytic HO. production in vitro and ROS production in neuroblastoma cells generated by Cu–Aβ and ascorbate, 4) HSA and DAHK were able to rescue these cells from the toxicity of Cu–Aβ with ascorbate, 5) DAHK was more potent in ROS suppression and restoration of neuroblastoma cell viability than HSA, in correlation with an easier reduction of CuII–HSA than Cu–DAHK by ascorbate, in vitro. Our data suggest that HSA is able to decrease aberrant CuII–Aβ interaction. The repercussion of the competition between HSA and Aβ to bind Cu in the blood and brain and its relation to Alzheimer's disease are discussed.  相似文献   
34.
The modification of sodium montmorillonite after a high pressure pasteurization treatment was followed by X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis. Regardless of the treatment intensity (300 and 800 MPa), the structure of montmorillonite was clearly modified. Such changes should be taken into consideration when binging montmorillonite–polymer nanocomposites into contact with food.  相似文献   
35.
Very long aging times, up to 15,100 h (629 days) at 110°C, were achieved on flame‐retardant printed circuit board laminates commonly used in automotive design. This composite was fabricated from glass fibers embedded in an epoxy resin. Aging was performed in an oven under an air atmosphere at a temperature lower than the glass‐transition temperature. Temperature‐modulated differential scanning calorimetric analysis was used to investigate the influence of such aging on the glass‐transition phenomena. A new amorphous phase appeared during aging. By extending the analysis to samples collected at different thicknesses, we demonstrated the existence of a time‐dependent gradient of the properties. A skin–core structure was evidenced, and this slowed down oxidation and allowed physical aging to occur in the bulk sample. An exponential law described the variations of the glass‐transition of the new external compound. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 786‐792, 2013  相似文献   
36.
Many space systems such as satellite mirrors and their supporting structures require to be made from very low-thermal expansion materials combining both high hydrostability and relatively high mechanical properties. In this study, we have applied the “composite concept” in order to explore the possibility of fabricating near zero thermal expansion silicon nitride based ceramics. Consequently, a negative thermal expansion material belonged to the lithium aluminosilicate family (LAS powder crystallized under de β-eucryptite structure) was introduced in an alpha-silicon nitride fine powder (5 and 20 vol% of LAS) and the resulting composite system was sintered by Spark Plasma Sintering (SPS) at 1400 and 1500 °C. In the case of 20 vol% LAS compositions, relatively well-densified ceramics (94.4% of the theoretical density) were produced without adding any further sintering additive. The addition of yttria and alumina oxides allowed enhancing the densification level up to 98.2% (20 vol% LAS compositions) or from 62.3% up to 96.7% of the theoretical density in 5 vol% LAS materials. Nevertheless, it was impossible to full consolidate silicon nitride/LAS composite ceramics at temperatures lower than the temperature at which β-eucryptite melts, even by using SPS technology. Moreover, because of the relatively low temperatures involved in SPS, the α to β-Si3N4 transformation was avoided, resulting in microstructures composed of fine equiaxed α-Si3N4 grains (<200 nm) and of a glassy phase. Even if the effect of having a very large negative thermal expansion material was lost during the sintering step (because of the β-eucryptite melting), ceramics containing only 20 vol% of LAS-based phase exhibited very interesting values as regards of mechanical properties (strength, hardness, toughness, and Young's modulus), thermal conductivity and thermal expansion coefficient. We discuss in this work why we are so interested in developing dense silicon nitride/LAS ceramics sintered without any further additive addition, even though β-eucryptite is melted during the process and the transformation to the β phase is avoided.  相似文献   
37.
The effect of a Lewis acid addition to a coking coal on the porosity and reactivity towards steam of the resulting iron enriched coal chars are studied. GIC (FeCl3 graphite intercalation compound) or free FeCl3 are used as iron containing additives. Coal iron enrichment was performed using either directly FeCl3 in vapour phase, or by mixing of coal and additives in decaline or by common grinding of coal and additives under argon. Iron enriched coals were carbonized at 750°C (heating RATE = 5°C min) and activation made with pure steam at 800°C to a burn-off off of 50 wt%. The pore structures of coal chars before and after activation were evaluated on the basis of CO2 and C6H6 sorption at 25°C. A significant development of the microporosity is observed in the iron enriched char before activation and its steam reactivity is also increased. After activation, BET surface area values are increased in presence of iron, and porosity is mainly microporous.  相似文献   
38.
A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (Rm) ranged between 3.0 and 7.1 μg N g−1 h−1, and affinity constant (Km) ranged from 7.4 to 30.7 mg N-NO3 L−1. These values were higher in slurry incubations with an Rm of 37.9 μg N g−1 h−1 and a Km of 104 mg N-NO3 L−1. Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4 ng N g−1 h−1 for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates).  相似文献   
39.
The dissolution of cellulose under 5 MPa of H2 in the absence of catalyst is temperature and time dependant. The presence of Pt/γ-Al2O3 increases the initial rate of dissolution. The presence of H2/Pt is essential although its exact role has not been well elucidated.  相似文献   
40.
Nitrate (NO3) is one of the world's major pollutants of drinking water resources. Although recent European Directives have reduced input from intensive agriculture, NO3 levels in groundwater are approaching the drinking water limit of 50 mg L(-1) almost everywhere. Determining the sources of groundwater contamination is an important first step toward improving its quality by emission control. It is with this aim that we review here the benefit of using a coupled isotopic approach (delta15N and delta11B), in addition to conventional hydrogeological analyses, to trace the origin of NO3 in water. The studied watersheds include both fractured bedrock and alluvial (subsurface and deep) hydrogeological contexts. The joint use of nitrogen and boron isotope systematics in each context deciphers the origin of NO3 in the groundwater and allows a semi-quantification of the contributions of the respective pollution sources (mineral fertilizers, wastewater, and animal manure).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号