首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   9篇
  国内免费   1篇
电工技术   2篇
化学工业   67篇
金属工艺   3篇
机械仪表   3篇
建筑科学   9篇
能源动力   1篇
轻工业   19篇
水利工程   1篇
无线电   6篇
一般工业技术   30篇
冶金工业   37篇
自动化技术   19篇
  2023年   1篇
  2022年   19篇
  2021年   15篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   11篇
  2012年   16篇
  2011年   11篇
  2010年   7篇
  2009年   11篇
  2008年   11篇
  2007年   12篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1976年   3篇
  1975年   2篇
  1967年   2篇
排序方式: 共有197条查询结果,搜索用时 165 毫秒
151.
A new bioactive glass composition (CEL2) in the SiO2–P2O5–CaO–MgO–K2O–Na2O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass–ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300–600 μm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass–ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.  相似文献   
152.
The epoxidation of functionalised substrates of interest as fine chemicals using mesoporous titanium-containing silicas is here reported and the role of silylation in changing the surface hydrophilic character of these catalysts is investigated. The silylation procedure was carried out on two titanium-grafted silicas with different morphologies. An ordered MCM-41 and a non-ordered commercial mesoporous silica were used as supports. The reactivity of bulky substrates with different characteristics (limonene, -terpineol, carveol and methyl linoleate) is studied and compared. The effect of silylation is more pronounced on Ti–MCM-41 than with low-surface area Ti–SiO2 and it is shown that the catalytic performances are strongly dependent on the nature of the reactant. Purely alkenic molecules show better reactivity over silylated catalysts than over non-silylated ones. On the other hand, a hydrophilic environment around the titanium active sites has often a beneficial effect in the epoxidation of richly functionalised substrates.  相似文献   
153.
An unsolved problem when employing small-diameter vascular grafts for aorto-coronary by-pass and peripheral reconstruction is the early thrombotic occlusion. The PEtU-PDMS is a new elastomeric material, composed of poly(ether)urethane and polydimethylsiloxane, synthesized to realize grafts with improved hemocompatibility characteristics. In order to investigate the effect of PDMS content on hemocompatibility, three different percentages of PDMS containing grafts (10, 25 and 40) were evaluated. Grafts realized with Estane 5714-F1 and silicone medical grade tubes were used as references. The hemocompatibility was investigated by an in vitro circuit in which human anticoagulated blood was circulated into grafts by a peristaltic pump modified to obtain a passive flow. For each experiment, 40 cm length graft was closed into a circular loop and put in rotation for 2 h at 37 degrees C. At the end of the experiments different parameters regarding platelet adhesion and activation were evaluated: circulating platelets count, beta-thromboglobulin release, platelet CD62P expression and amount of monocyte-platelet conjugates. PEtU-PDMS grafts with 25 and 40% of PDMS induced the lowest platelet adhesion, plasma level of beta-TG and amount of monocyte-platelet conjugates. No significative variations were observed in CD62P expression. In conclusion, PDMS content significatively affects blood-graft surface interaction, in fact higher PDMS percentage containing grafts showed the best in vitro hemocompatibility.  相似文献   
154.
The quality of extra-virgin olive oils (EVOO) from organic and conventional farming was investigated in this 3-year (2001–2003) study. The oils were extracted from Leccino and Frantoio olive (Olea europaea) cultivars, grown in the same geographical area under either organic or conventional methods. Extra-virgin olive oils (EVOO) were produced with the same technology and samples were analyzed for nutritional and quality parameters. Volatile compounds were measured with solid-phase microextraction combined with gas chromatography and mass spectrometry (SPME–GC–MS). Sensory evaluation was also completed by a trained panel. Significant differences were found in these parameters between organic and conventional oils in some years, but no consistent trends across the 3 years were found. The acidity of organic Leccino oils was higher than conventional oils in 2001 and 2002 but not in 2003; Frantoio oils were never different. Organic Leccino oils had higher peroxide index than conventional oils in 2001 and 2002 but it was the reverse in 2003. Organic Frantoio oils had lower peroxide index in 2001, but values were not statistically different in the other years. The concentrations of phenols, o-diphenols, tocopherols, the antioxidant capacity and the volatile compounds showed differences in some years and no difference, or opposite differences, in others. Sensory analysis showed only slight differences in few aromatic notes. Our results showed that organic versus conventional cultivation did not affect consistently the quality of the high quality EVOO considered in this study, at least in the measured parameters. Genotype and year-to-year changes in climate, instead, had more marked effects.  相似文献   
155.
The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient’s outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.  相似文献   
156.
This research work is focused on the preparation of macroporous glass-ceramic scaffolds with high mechanical strength, equivalent with cancellous bone. The scaffolds were prepared using an open-cells polyurethane sponge as a template and glass powders belonging to the system SiO2–P2O5–CaO–MgO–Na2O–K2O. The glass, named as CEL2, was synthesized by a conventional melting-quenching route, ground and sieved to obtain powders of specific size. A slurry of CEL2 powders, polyvinyl alcohol (PVA) as a binder and water was prepared in order to coat, by a process of impregnation, the polymeric template. A thermal treatment was then used to remove the sponge and to sinter the glass powders, in order to obtain a replica of the template structure. The scaffolds were characterized by means of X-ray diffraction analysis, morphological observations, density measurements, volumetric shrinkage, image analysis, capillarity tests, mechanical tests and in vitro bioactivity evaluation.  相似文献   
157.
Photodynamic therapy (PDT) has been pointed out as a candidate for improving melanoma treatment. Nanotechnology application in PDT has increased its efficacy by reducing side effects. Herein, mesoporous silica nanoparticles (MSNs) conjugated with verteporfin (Ver-MSNs), in use with PDT, were administered in mice to evaluate their efficacy on lymphoangiogenesis and micrometastasis in melanoma. Melanoma was induced in mice by the subcutaneous injection of B16-F10 cells. The mice were transcutaneously treated with MSNs, Ver-MSNs, or glycerol and exposed to red light. The treatment was carried out four times until day 20. Lymphangiogenesis and micrometastasis were identified by the immunohistochemical method. Lymphoangiogenesis was halved by MSN treatment compared with the control animals, whereas the Ver-MSN treatment almost abolished it. A similar reduction was also observed in lung micrometastasis. PDT with topically administrated Ver-MSNs reduced melanoma lymphoangiogenesis and lung micrometastasis, as well as tumor mass and angiogenesis, and therefore their use could be an innovative and useful tool in melanoma clinical therapy.  相似文献   
158.
BMD is characterized by a marked heterogeneity of gene mutations resulting in many abnormal dystrophin proteins with different expression and residual functions. The smaller dystrophin molecules lacking a portion around exon 48 of the rod domain, named the D8 region, are related to milder phenotypes. The study aimed to determine which proteins might contribute to preserving muscle function in these patients. Patients were subdivided, based on the absence or presence of deletions in the D8 region, into two groups, BMD1 and BMD2. Muscle extracts were analyzed by 2-D DIGE, label-free LC-ESI-MS/MS, and Ingenuity pathway analysis (IPA). Increased levels of proteins typical of fast fibers and of proteins involved in the sarcomere reorganization characterize BMD2. IPA of proteomics datasets indicated in BMD2 prevalence of glycolysis and gluconeogenesis and a correct flux through the TCA cycle enabling them to maintain both metabolism and epithelial adherens junction. A 2-D DIGE analysis revealed an increase of acetylated proteoforms of moonlighting proteins aldolase, enolase, and glyceraldehyde-3-phosphate dehydrogenase that can target the nucleus promoting stem cell recruitment and muscle regeneration. In BMD2, immunoblotting indicated higher levels of myogenin and lower levels of PAX7 and SIRT1/2 associated with a set of proteins identified by proteomics as involved in muscle homeostasis maintenance.  相似文献   
159.
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.  相似文献   
160.
Primary progressive aphasia (PPA) damages the parts of the brain that control speech and language. There are three clinical PPA variants: nonfluent/agrammatic (nfvPPA), logopenic (lvPPA) and semantic (svPPA). The pathophysiology underlying PPA variants is not fully understood, including the role of micro (mi)RNAs which were previously shown to play a role in several neurodegenerative diseases. Using a two-step analysis (array and validation through real-time PCR), we investigated the miRNA expression pattern in serum from 54 PPA patients and 18 controls. In the svPPA cohort, we observed a generalized upregulation of miRNAs with miR-106b-5p and miR-133a-3p reaching statistical significance (miR-106b-5p: 2.69 ± 0.89 mean ± SD vs. 1.18 ± 0.28, p < 0.0001; miR-133a-3p: 2.09 ± 0.10 vs. 0.74 ± 0.11 mean ± SD, p = 0.0002). Conversely, in lvPPA, the majority of miRNAs were downregulated. GO enrichment and KEGG pathway analyses revealed that target genes of both miRNAs are involved in pathways potentially relevant for the pathogenesis of neurodegenerative diseases. This is the first study that investigates the expression profile of circulating miRNAs in PPA variant patients. We identified a specific miRNA expression profile in svPPA that could differentiate this pathological condition from other PPA variants. Nevertheless, these preliminary results need to be confirmed in a larger independent cohort.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号