首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   9篇
  国内免费   1篇
电工技术   2篇
化学工业   67篇
金属工艺   3篇
机械仪表   3篇
建筑科学   9篇
能源动力   1篇
轻工业   19篇
水利工程   1篇
无线电   6篇
一般工业技术   30篇
冶金工业   37篇
自动化技术   19篇
  2023年   1篇
  2022年   19篇
  2021年   15篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   11篇
  2012年   16篇
  2011年   11篇
  2010年   7篇
  2009年   11篇
  2008年   11篇
  2007年   12篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1976年   3篇
  1975年   2篇
  1967年   2篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
61.
62.
Sludge treatment wetlands (STW) emerge as a promising sustainable technology with low energy requirements and operational costs. In this study, technical, economic and environmental aspects of STW are investigated and compared with other alternatives for sludge management in small communities (<2000 population equivalent). The performance of full-scale STW was characterised during 2 years. Sludge dewatering increased total solids (TS) concentration by 25%, while sludge biodegradation lead to volatile solids around 45% TS and DRI24h between 1.1 and 1.4 gO2/kgTS h, suggesting a partial stabilisation of biosolids. In the economic and environmental assessment, four scenarios were considered for comparison: 1) STW with direct land application of biosolids, 2) STW with compost post-treatment, 3) centrifuge with compost post-treatment and 4) sludge transport to an intensive wastewater treatment plant. According to the results, STW with direct land application is the most cost-effective scenario, which is also characterised by the lowest environmental impact. The life cycle assessment highlights that global warming is a significant impact category in all scenarios, which is attributed to fossil fuel and electricity consumption; while greenhouse gas emissions from STW are insignificant. As a conclusion, STW are the most appropriate alternative for decentralised sludge management in small communities.  相似文献   
63.

Object

Electroencephalography-functional magnetic resonance imaging (EEG-fMRI) coregistration and high-density EEG (hdEEG) can be combined to map noninvasively abnormal brain activation elicited by epileptic processes. By combining noninvasive imaging techniques in a multimodal approach, we sought to investigate pathophysiological mechanisms underlying epileptic activity in seven patients with severe traumatic brain injury.

Materials and methods

Standard EEG and fMRI data were acquired during a single scanning session. The EEG-fMRI data were analyzed using the general linear model and independent component analysis. Source localization of interictal epileptiform discharges (IEDs) was performed using 256-channel hdEEG. Blood oxygenation level dependent (BOLD) localizations were then compared to EEG source reconstruction.

Results

On hdEEG, focal source localization was detected in all seven patients; in six out of seven it was concordant with the expected epileptic activity as defined by EEG data and clinical evaluation; and in four out of seven in whom IEDs were recorded, BOLD signal changes were observed. These activities were partially concordant with the source localization.

Conclusion

Multimodal integration of EEG-fMRI and hdEEG combining two different methods to localize the same epileptic foci appears to be a promising tool to noninvasively map abnormal brain activation in patients with post-traumatic brain injury.  相似文献   
64.
This research work aims to propose highly porous polymer/bioactive glass composites as potential scaffolds for hard-tissue and soft-tissue engineering. The scaffolds were prepared by impregnating an open-cells polyurethane sponge with melt-derived particles of a bioactive glass belonging to the SiO2–P2O5–CaO–MgO–Na2O–K2O system (CEL2). Both the starting materials and the composite scaffolds were investigated from a morphological and structural viewpoint by X-ray diffraction analysis and scanning electron microscopy. Tensile mechanical tests, carried out according to international ISO and ASTM standards, were performed by using properly tailored specimens. In vitro tests by soaking the scaffolds in simulated body fluid (SBF) were also carried out to assess the bioactivity of the porous composites. It was found that the composite scaffolds were highly bioactive as after 7 days of soaking in SBF a HA layer grew on their surface. The obtained polyurethane/CEL2 composite scaffolds are promising candidates for tissue engineering applications.  相似文献   
65.
Dietary exposure to soy has been associated with reduced breast cancer incidence. Soy isoflavones and protein components, such as protease inhibitors and the lunasin peptide, have been indicated as potential agents reducing carcinogenesis. In this study, the effect of soy-based diets was evaluated in a transgenic mouse model of breast carcinoma, overexpressing the neu oncogene. Neu female mice were fed for 20 wk a soy- and isoflavone-free diet (IFD), 4RF21 laboratory mouse diet, soy-based, thus isoflavone-rich (STD), or AIN-76-based semisynthetic diets with a soy protein isolate (SPI) or an isoflavone-poor soy protein concentrate (IPSP) as protein source. Mice were then sacrificed and tumors removed. Mammary tumor weights were not different in SPI versus IFD and STD fed mice. In contrast, mice fed IPSP showed reduced tumor progression versus IFD and STD groups (p < 0.05). Moreover, IPSP fed mice showed lower bromo-2'-deoxyuridine (BrdU) incorporation into breast tumor cells compared to STD and SPI fed animals (p < 0.02). Lung metastases were detected in 80% of IFD fed mice, in 70% of mice fed STD and SPI, and only in 50% of the IPSP fed animals. These results indicate that a diet containing an isoflavone-poor soy protein concentrate may inhibit breast tumor progression and metastasis development.  相似文献   
66.
67.
Glass–ceramic macroporous scaffolds were prepared using glass powders and polyethylene (PE) particles of two different sizes. The starting glass, named as Fa-GC, belongs to the system SiO2–P2O5–CaO–MgO–Na2O–K2O–CaF2 and was synthesized by a traditional melting-quenching route. The glass was ground and sieved to obtain powders of specific size which were mixed with PE particles and then uniaxially pressed in order to obtain crack-free green samples. The compact of powders underwent a thermal treatment to remove the organic phase and to sinter the Fa-GC powders. Fa-GC scaffolds were characterized by means of X-Ray Diffraction, morphological observations, density measurements, image analysis, mechanical tests and in vitro tests. Composite systems were then prepared combining the drug uptake-delivery properties of MCM-41 silica micro/nanospheres with the Fa-GC scaffold. The system was prepared by soaking the scaffold into the MCM-41 synthesis batch. The composite scaffolds were characterized by means of X-Ray Diffraction, morphological observations, mechanical tests and in vitro tests. Ibuprofen was used as model drug for the uptake and delivery analysis of the composite system. In comparison with the MCM-41-free scaffold, both the adsorption capacity and the drug delivery behaviour were deeply affected by the presence of MCM-41 spheres inside the scaffold.  相似文献   
68.
Heterogeneous Photooxidation of Phenol by Catalytic Membranes   总被引:1,自引:0,他引:1  
In this work the heterogenization in polymeric membranes of decatungstate, a photocatalyst for oxidation reactions, was reported. Solid state characterization techniques confirmed that the catalyst structure was preserved within the polymeric membranes. The catalytic membranes were successfully applied in the aerobic photo-oxidation of phenol, one of the main organic pollutants in wastewater, providing stable and recyclable photocatalytic systems. The dependence of the phenol degradation rate by the catalyst loading and transmembrane pressure was shown. By comparison with homogeneous reaction, the catalyst heterogenised in membrane appears to be more efficient concerning the rate of phenol photodegradation and mineralization.  相似文献   
69.
Upconversion (UC) nanoparticles characterized by red upconversion emission, particularly interesting for biological applications, have been prepared and subsequently modified by the covalent anchoring of Verteporfin (Ver), an FDA approved photosensitizer (PS) which usually exerts its photodynamic activity upon excitation with red light. ZrO2 was chosen as the platform where Yb3+ and Er3+ were inserted as the sensitizer and activator ions, respectively. Careful control of the doping ratio, along with a detailed physico-chemical characterization, was carried out. Upon functionalization with a silica shell to covalently anchor the photosensitizer, a theranostic nanoparticle was obtained whose architecture, thanks to a favorable energy level match and a uniform distribution of the PS, allowed us to trigger the photodynamic activity of Ver by upconversion, thus paving the way to the use of Photodynamic Therapy (PDT) in deep tissues, thanks to the higher penetrating power of NIR light.  相似文献   
70.
Nowadays, antimicrobial resistance (AMR) represents a challenge for antibiotic therapy, mostly involving Gram-negative bacteria. Among the strategies activated to overcome AMR, the repurposing of already available antimicrobial molecules by encapsulating them in drug delivery systems, such as nanoparticles (NPs) and also engineered NPs, seems to be promising. Tobramycin is a powerful and effective aminoglycoside, approved for complicated infections and reinfections and indicated mainly against Gram-negative bacteria, such as Pseudomonas aeruginosa, Escherichia coli, Proteus, Klebsiella, Enterobacter, Serratia, Providencia, and Citrobacter species. However, the drug presents several side effects, mostly due to dose frequency, and for this reason, it is a good candidate for nanomedicine formulation. This review paper is focused on what has been conducted in the last 20 years for the development of Tobramycin nanosized delivery systems (nanoantibiotics), with critical discussion and comparison. Tobramycin was selected as the antimicrobial drug because it is a wide-spectrum antibiotic that is effective against both Gram-positive and Gram-negative aerobic bacteria, and it is characterized by a fast bactericidal effect, even against multidrug-resistant microorganisms (MDR).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号