首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   87篇
  国内免费   2篇
电工技术   4篇
综合类   2篇
化学工业   335篇
金属工艺   17篇
机械仪表   13篇
建筑科学   12篇
矿业工程   1篇
能源动力   38篇
轻工业   103篇
水利工程   14篇
石油天然气   6篇
无线电   62篇
一般工业技术   156篇
冶金工业   10篇
原子能技术   10篇
自动化技术   93篇
  2024年   3篇
  2023年   18篇
  2022年   56篇
  2021年   72篇
  2020年   62篇
  2019年   68篇
  2018年   91篇
  2017年   70篇
  2016年   71篇
  2015年   37篇
  2014年   56篇
  2013年   78篇
  2012年   51篇
  2011年   48篇
  2010年   36篇
  2009年   15篇
  2008年   15篇
  2007年   10篇
  2006年   7篇
  2005年   3篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有876条查询结果,搜索用时 381 毫秒
101.
The development of functional nanofiber materials with high specific surface area and porosity has been a highly interesting field of research in recent years due to its versatile properties for diverse applications. The combination of nanofibers into material clothes can open up new opportunities to improve comfort performance and thermal management properties. In this work, we demonstrated that the porous lightweight nanofibrous membrane could be coated on the fabric and laminated to improve its thermal comfort. The polyacrylonitrile was electrospun onto the surface of the polyester fabric with three different fineness and laminated with a warp knitted interlining in a controlled condition by sewing/fusing. The effect of the nanofibers diameter, sewing and fusing process on thermal insulation, air permeability, breathability, and water resistance of the obtained three‐layer samples were studied. The results showed that the presence of the nanofibers thin layer could improve the thermal comfort by controlling the studied parameters compared to the external face fabric as control. It was obtained that the fusing technique is more efficient than sewing for this purpose. The fused samples are waterproof and windproof, while instantly venting moisture and had good thermal insulation to protect the body from cold. POLYM. ENG. SCI., 59:2032–2040, 2019. © 2019 Society of Plastics Engineers  相似文献   
102.
This paper describes the microwave characterization and wettability of a uniform and light magnetic nanofibers web. Iron oxide nanoparticles/recycled poly (ethylene terephthalate) nanofibers web (Fe3O4 NPs/RPET NFs web) were fabricated from bath-sonication solution via electrospinning method. For environmental conservation and economic reasons, RPET instead of virgin material was used. After synthesizing magnetic Fe3O4 NPs with an average diameter of 35?nm by precipitation method using iron sulfate and sodium hydroxide, Fe3O4 NPs/RPET NFs web was made. The main objective of this work is to show how Fe3O4 NPs are able to significantly modify electromagnetic properties at X-band frequencies. Microwave characterization is based on the microwave scattering parameters measured in the X-band (8–12?GHz). Various characterization methods, including field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), have been used to study morphologies, crystalline structure, magnetic, and wettability properties of NFs web. The saturation magnetization of the Fe3O4 NPs/RPET NFs web at a concentration of 5% was 2.79?emu/g. The mathematical model was estimated for magnetization, diameter and concentration by MathWorks Model Predictive Control Toolbax Software. The wettability, reflection coefficient, absorption coefficient, and EMI shielding of Fe3O4 NPs/RPET NFs web have been improved compared to RPET NFs web.  相似文献   
103.
This work presents an interesting method using an electrospinning process to fabricate suture yarns loaded with curcumin to achieve reasonable mechanical properties as well as tunable drug release behavior. Different structures including different yarn counts and twists as well as core-sheath structures were used to adjust drug release properties along with improving the yarn's mechanical properties. The core parts were made of polycaprolactone and the sheath parts were made of polyethylene glycol, polylactic acid, and polycaprolactone. Drugs can be incorporated in both parts based on the required condition and application. Electrospun yarns were compared using both structural properties and their drug release profiles as metrics. The results of comparing drug release profiles of six electrospun yarns with different yarn counts and twists showed that yarns with finer fiber diameters in the core part have more drug release as well as more initial release. Overall evaluations showed that core-sheath drugloaded yarn with appropriate physical and mechanical properties can be a useful material as a drug delivery system to the site of damaged tissue. It can also be concluded that the amount and duration of drug release can be controlled using the structural parameters of electrospun yarns as an engineering tool for designing suture yarns with required properties.  相似文献   
104.
In situ prolonged delivery of drugs at the site of tumor can be satisfactorily accelerated patient recovery. We compared the effect of temozolomide while incorporated by polycaprolactone nanofibers on the apoptotic behavior of U87 glioma cells. After biocompatibility evaluation of nanofibers by scanning electron microscope and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide analysis, the apoptosis of U87 cells was evaluated using p53, Bcl2 and Bax genes expression. It was found that nanofiber-temozolomide group showed a greater ability to induce apoptosis as well as have a significantly diminished initial burst release of drug compared with other groups and have promising potential in treating cancer.  相似文献   
105.
Different top layer fabrication methods (amine-first, acid-first, spin coating), organic phase solvents (hexane, heptane, mixed hexane/heptane), acid acceptors (triethylamine, sodium carbonate, sodium hydroxide), and surfactant sodium dodecyl sulfate concentrations (0, 0.05, and 0.1 wt%) were utilized to fabricate thin film composite polyamide membranes for CO2/N2 separation. The results, according to an L9 orthogonal array of Taguchi approach, showed that employing acid-first method increases both CO2 permeance and CO2/N2 selectivity of the membranes at a feed gas pressure of 3 bars. On the other hand, sodium hydroxide, and triethylamine should be used, as acid acceptors, to maximize CO2 permeance and CO2/N2 selectivity, respectively. Moreover, the use of hexane solvent and 0 wt% surfactant led to maximum permeance, while, hexane solvent and 0.1 wt% surfactant were needed to reach the highest selectivity. The above level setting of synthesis parameters also resulted in the minimum sensitivity of the fabrication process to the noise factors effects. As shown by the analysis of variance, acid acceptor, and organic solvent types were the most influential parameters on CO2 permeance and CO2/N2 selectivity, respectively. The effects of fabrication method and surfactant concentration, as single factors, on permeation/selectivity responses were also investigated.  相似文献   
106.
107.
108.
The aim of the study was to evaluate the physical and microstructural characteristics of crackers baked in four different industrial baking ovens (indirect radiation-cyclotherm, indirect convection, hybrid and industrial tunnel-ITO). Indirect convection and cyclotherm ovens provide the highest (5685.43 ± 51 W m−2) and the lowest (4860 ± 38.87 W m−2) amount of heat flux, respectively. Despite the amount of heat flux, indirect convection led to crackers with the highest moisture (7.86% vs. 4.82% in clyclotherm) and specific volume, but the lowest hardness. Cyclotherm resulted in crackers with lower specific volume, surface area, porosity, smooth and regular surface. Conversely, the hybrid and ITO ovens showed closer heat flux, leading to crackers with similar moisture content, texture parameters, specific volume, browning and inner porosity. Overall results show the potential of baking using different ovens for modifying the quality parameters of the crackers.  相似文献   
109.
The current investigation describes a computational technique to solve one- and two-dimensional Fredholm integral equations of the second kind. The method estimates the solution using the discrete collocation method by combining locally supported radial basis functions (RBFs) constructed on a small set of nodes instead of all points over the analysed domain. In this work, we employ the Gauss–Legendre integration rule on the influence domains of shape functions to approximate the local integrals appearing in the method. In comparison with the globally supported RBFs for solving integral equations, the proposed method is stable and uses much less computer memory. The scheme does not require any cell structures, so it is meshless. We also obtain the error analysis of the proposed method and demonstrate that the convergence rate of the approach is high. Illustrative examples clearly show the reliability and efficiency of the new method.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号