首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   32篇
  国内免费   6篇
电工技术   2篇
综合类   1篇
化学工业   127篇
金属工艺   2篇
机械仪表   15篇
建筑科学   13篇
能源动力   12篇
轻工业   47篇
石油天然气   2篇
无线电   43篇
一般工业技术   70篇
冶金工业   17篇
自动化技术   55篇
  2024年   3篇
  2023年   9篇
  2022年   42篇
  2021年   44篇
  2020年   27篇
  2019年   21篇
  2018年   23篇
  2017年   21篇
  2016年   27篇
  2015年   15篇
  2014年   11篇
  2013年   30篇
  2012年   8篇
  2011年   21篇
  2010年   21篇
  2009年   12篇
  2008年   15篇
  2007年   9篇
  2006年   9篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有406条查询结果,搜索用时 15 毫秒
21.
The fluid loss control performance of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS®)‐based copolymers added to cement slurries was studied at 27 and 100°C, respectively. It was found that effectiveness of these fluid loss additives solely relies on achievement of a high adsorbed amount on the surface of cement. At elevated temperature (100°C), CaAMPS®‐N,N‐dimethyl acrylamide copolymer (CaAMPS®‐co‐NNDMA) exhibits reduced adsorption and hence decreased fluid loss control of the cement slurry. The reason behind this behavior is poor calcium binding capability of the sulfonate anchor groups, which coordinate with calcium atoms present on the mineral surface. Whereas, an increase in the sulfate concentration present in cement pore solution instigates partial coiling of CaAMPS®‐co‐NNDMA and causes only a slight influence on the performance of this copolymer. The elevated sulfate content results from thermal degradation of ettringite, a cement hydrate mineral produced during the early stages of cement hydration. Incorporation of minor amounts (~ 1.3 mol %) of maleic anhydride into this copolymer produces a terpolymer, which exhibits higher and more stable adsorption, even at high temperature. This effect is owed to the presence of homopolymer blocks of polycarboxylates distributed along the polymer trunk. On mineral surfaces, they present much stronger anchor groups than sulfonate functionalities, as evidenced by their higher calcium binding capability. Consequently, fluid loss performance of CaAMPS®‐co‐NNDMA‐co‐MA is little affected by temperature. Understanding the influence of temperature on the physicochemical interactions occurring between additives and the mineral surface can help to design more effective admixtures suitable for high temperature applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
22.
When used by itself, polyethylene imine (PEI) does not perform well as cement fluid loss additive. Its combination with acetone formaldehyde sulfite (AFS) polycondensate, however, exhibits excellent filtration control. The mechanism underlying this synergistic effect was studied and the conditions producing best results were determined. For optimum performance, PEI and AFS must be reacted with each other to yield a polyelectrolyte complex (PEC) (d ~ 5–10 μm), which effectively plugs the pores of the cement filter cake. Composition, size, and effectiveness of the PEC are strongly influenced by the anionic charge amount of the AFS dispersant. Ionic interactions between cationic imine functionalities of PEI and anionic sulfonate groups existing in AFS were confirmed by conductivity, infrared, zeta potential, and particle size measurements. For AFS samples possessing different degrees of sulfonation, the largest particle size and hence best fluid loss performance of the PEC was found to occur at a PEI:AFS molar ratio, which corresponds to neutral charge. Occurrence of large PEC particles (d ~ 5 μm) within the cement filter cake pores was visualized by scanning electron microscopy, and their stability in highly alkaline cement pore solution was confirmed by particle size measurement. Other anionic polyelectrolytes may be used to yield such PECs with PEI to provide effective fluid loss control for cement slurries. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
23.
This work aimed at identifying the tensile deformation mechanisms of an original grade of plasticized polylactide (pPLA) obtained by reactive extrusion. This material had a glass transition temperature of 32.6 °C and consisted of a polylactide (PLA) matrix grafted with poly(acryl‐poly(ethylene glycol)) (poly(Acryl‐PEG)) inclusions. pPLA behaved like a rubber‐toughened amorphous polymer at 20 °C, and its tensile behavior evolved toward a rubbery semicrystalline polymer with increasing temperature. The drawing of pPLA involved orientation of amorphous and crystalline chains, crystallization, and destruction of crystals. It was found that crystal formation and crystal destruction were in competition below 50 °C, resulting in a constant or slightly decreasing crystallinity with strain. Increasing temperature enhanced crystal formation and limited crystal destruction, resulting in an increased crystallinity with the strain level. Drawing yielded a transformation of the initial spherical poly(Acryl‐PEG) inclusions into ellipsoids oriented in the tensile direction. This mechanism may engender the formation of nanovoids within the inclusions due to a decreased density, assumed to be responsible for the whitening of the specimen. © 2015 Society of Chemical Industry  相似文献   
24.
This work is based on formulating and optimizing controlled release (CR) valsartan (160 mg) tablets using different viscosity grades of the cellulosic polymer. The objective was to develop an effective once-daily drug delivery system of this cardiovascular agent. Central composite design was used for designing the formulations. Polymers used were Methocel® K4M, K15M and K100M. Compatibility of excipients with active was studied through FT-IR. Micromeritic properties were determined and formulations exhibiting appropriate flow characteristics were compressed. Swelling behavior and in vitro buoyancy effect were studied and response surface curves were constructed to optimize the formulation. Multi-point dissolution profiles of valsartan CR tablets at pH 1.2, 4.5 and 6.8 were obtained. Model-dependent and model-independent methods were performed including f2, stability test as per ICH guidelines and ANOVA. FT-IR studies revealed the compatibility of valsartan with all excipients. Formulation K4T9 (containing 25% K4M polymer) was selected to be the best optimized trial, based on physical properties and controlled release profile (23% at 4 h, 82% at 16 h and 100% at 24 h). Results of buoyancy and swelling behavior indicated that HPMC-K4M polymer exhibited excellent floating lag time and swelling indexes. In vitro drug release kinetics showed that formulation K4T9 displayed Korsmeyer–Peppas drug release pattern with r value > 0.99. The manufacturing process of K4T9 was also found to be reproducible with a shelf life period of 41 and 36 months at room temperature and accelerated conditions, respectively. Valsartan CR matrix-based formulation was successfully prepared with Methocel K4M retardant.  相似文献   
25.
An alternative for reducing emissions from marine fuel is to blend bio-oil from lignocellulose non-edible feedstocks to diesel fossil fuels. Phase diagrams of the ternary systems were built to represent the transition from heterogeneous regions to homogeneous regions. Four homogeneous blends of bio-oil of eucalyptus-bioethanol-marine gasoil were experimentally characterized with respect to the most important fuel parameters for marine engines: water content, flash point, low heating value, viscosity, and acidity. Blends with closer properties to marine gasoil replacement, lower costs, and environmental impacts should be tested for large engines.  相似文献   
26.
27.
28.
There is an urgent need to treat diabetes, and therefore, this work reports on a chitosan-built hydrogel functionalized by a glucose sensing moiety, which simulates pancreatic activity. The effect of external stimuli on various internal properties was investigated to establish the action of the hydrogel. The model drugs, fluorescein (D1) and rhodamine (D2), with a diol architecture, were investigated spectroscopically with 75.94% loading and 65.63% release. Consequently, a ligand to glucose ratio of 2:1 in comparison with a ligand to model drug ratio of 1:1 was addressed. The system was expected to lead to findings on applications for the self-controlled release of insulin in response to blood glucose levels.  相似文献   
29.
Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.  相似文献   
30.
In this work, PVDF composites containing 0.2% (m/m) of carbon nanotubes (MWCNTs), PVDF with 5.0% (m/m) of zinc oxide (ZnO), and composites containing both particles in the same contents in the matrix were melt processed in a mini-extruder machine with double screws, using the counter-rotation mode. Composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), dynamic-mechanical analysis (DMA), and contact angle tests (CA). The samples presented the predominance of the α phase, with an increased degree of crystallinity as well as an increase in dimensional stability by incorporating both fillers, showing a synergistic effect between these particles, as shown on FTIR, DSC, and XRD results. SEM images showed a good dispersion of high aspect ratio particles. In general, DMA and TGA analysis showed that composites had not decreased their thermal and mechanical performance when compared to neat PVDF. Results of CA analysis showed an increase in the hydrophobicity of the sample containing MWCNTs. Permeability tests were also performed using a differential pressure system, combining high temperature and pressure, obtaining permeability measures and time lag. This work presents an alternative of composite materials, suggesting its application in the internal pressure sheath layers of oil and gas flexible pipes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号