首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2264篇
  免费   170篇
  国内免费   10篇
电工技术   38篇
综合类   7篇
化学工业   615篇
金属工艺   36篇
机械仪表   57篇
建筑科学   87篇
矿业工程   4篇
能源动力   181篇
轻工业   294篇
水利工程   39篇
石油天然气   11篇
无线电   292篇
一般工业技术   406篇
冶金工业   54篇
原子能技术   14篇
自动化技术   309篇
  2024年   7篇
  2023年   70篇
  2022年   124篇
  2021年   225篇
  2020年   137篇
  2019年   113篇
  2018年   163篇
  2017年   146篇
  2016年   148篇
  2015年   107篇
  2014年   138篇
  2013年   181篇
  2012年   153篇
  2011年   185篇
  2010年   103篇
  2009年   98篇
  2008年   51篇
  2007年   51篇
  2006年   45篇
  2005年   32篇
  2004年   27篇
  2003年   31篇
  2002年   17篇
  2001年   7篇
  2000年   11篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1986年   4篇
  1984年   3篇
  1983年   1篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2444条查询结果,搜索用时 0 毫秒
31.
The direct conversion of solar energy into fuels or feedstock is an attractive approach to address increasing demand of renewable energy sources. Photocatalytic systems relying on the direct photoexcitation of metals have been explored to this end, a strategy that exploits the decay of plasmonic resonances into hot carriers. An efficient hot carrier generation and collection requires, ideally, their generation to be enclosed within few tens of nanometers at the metal interface, but it is challenging to achieve this across the broadband solar spectrum. Here the authors demonstrate a new photocatalyst for hydrogen evolution based on metal epsilon‐near‐zero metamaterials. The authors have designed these to achieve broadband strong light confinement at the metal interface across the entire solar spectrum. Using electron energy loss spectroscopy, the authors prove that hot carriers are generated in a broadband fashion within 10 nm in this system. The resulting photocatalyst achieves a hydrogen production rate of 9.5 µmol h?1 cm?2 that exceeds, by a factor of 3.2, that of the best previously reported plasmonic‐based photocatalysts for the dissociation of H2 with 50 h stable operation.  相似文献   
32.
A plethora of research advances have emerged in the fields of optics and photonics that benefit from harnessing the power of machine learning.Specifically,there has been a revival of interest in optical computing hardware due to its potential advantages for machine learning tasks in terms of parallelization,power efficiency and computation speed.Diffractive deep neural networks(D2NNs)form such an optical computing framework that benefits from deep learning-based design of successive diffractive layers to all-optically process information as the input light diffracts through these passive layers.D2NNs have demonstrated success in various tasks,including object classification,the spectral encoding of information,optical pulse shaping and imaging.Here,we substantially improve the inference performance of diffractive optical networks using feature engineering and ensemble learning.After independently training 1252 D2NNs that were diversely engineered with a variety of passive input filters,we applied a pruning algorithm to select an optimized ensemble of D2NNs that collectively improved the image classification accuracy.Through this pruning,we numerically demonstrated that ensembles of N=14 and N=30 D2NNs achieve blind testing accuracies of 61.14±0.23%and 62.13±0.05%,respectively,on the classification of GFAR-10 test images,providing an inference improvennent of>16%compared to the average performance of the individual D2NNs within each ensemble.These results constitute the highest inference accuracies achieved to date by any diffractive optical neural network design on the same dataset and might provide a significant leap to extend the application space of diffractive optical image classification and machine vision systems.  相似文献   
33.
Bearings play a crucial role in rotational machines and their failure is one of the foremost causes of breakdowns in rotary machinery. Their functionality is directly relevant to the operational performance, service life and efficiency of these machines. Therefore, bearing fault identification is very significant. The accuracy of fault or anomaly detection by the current techniques is not adequate. We propose a data mining-based framework for fault identification and anomaly detection from machine vibration data. In this framework, to capture the useful knowledge from the vibration data stream (VDS), we first pre-process the data using Fast Fourier Transform (FFT) to extract the frequency signature and then build a compact tree called SAFP-tree (sliding window associated frequency pattern tree), and propose a mining algorithm called SAFP. Our SAFP algorithm can mine associated frequency patterns (i.e., fault frequency signatures) in the current window of VDS and use them to identify faults in the bearing data. Finally, SAFP is further enhanced to SAFP-AD for anomaly detection by determining the normal behavior measure (NBM) from the extracted frequency patterns. The results show that our technique is very efficient in identifying faults and detecting anomalies over VDS and can be used for remote machine health diagnosis.  相似文献   
34.
This briefing article presents gene-expression programming (GEP), which is an extension to genetic programming, as an alternative approach to predict friction factor for Southern Italian rivers. Published data were compiled for the friction for 43 gravel-bed rivers of Calabria. The proposed GEP approach produces satisfactory results (R 2 = 0.958 and RMSE = 0.079) compared with existing predictors.  相似文献   
35.
PMMA optical components that are used as one of the most important parts of high precision equipments and machines are increasingly replacing the glass due to the various advantages of PMMA. Especially in Light Guide Panels, the PMMA sheet that is used in Liquid Crystal Displays plays an important role in scattering the incident light and requires very fine machining as the sheet is directly related to the optical characteristics of the panels. The High Speed End milling and High Speed Shaping processes that are widely adopted and applied to the precise machining of Light Incident Plane still have quality problems, such as cracks, breakages, poor waviness, and straightness. This paper presents the tooling device design for machining a Light Incident Plane through vibration-assisted High Speed Shaping for increasing the optical quality by minimizing the above-mentioned problems. The cutting tool and the tool post presented in this paper are designed by the authors to increase the magnitude of the cutting stroke by adopting the resonant frequency without weakening the stiffness and to reduce vibrations during even high speed feeding. The dynamic characteristics of the cutting tool and the tool post are evaluated through simulation and experiment as well. The results reveal very appropriate dynamic characteristics for vibration-assisted High Speed Shaping.  相似文献   
36.
The geometry of cutting flutes and the surfaces of end mills is one of the crucial parameters affecting the quality of the machining in the case of end milling. These are usually represented by two-dimensional models. This paper describes in detail the methodology to model the geometry of a flat end mill in terms of three-dimensional parameters. The geometric definition of the end mill is developed in terms of surface patches; flutes as helicoidal surfaces, the shank as a surface of revolution and the blending surfaces as bicubic Bezier and biparametric sweep surfaces. The proposed model defines the end mill in terms of three-dimensional rotational angles rather than the conventional two dimensional angles. To validate the methodology, the flat end milling cutter is directly rendered in OpenGL environment in terms of three-dimensional parameters. Further, an interface is developed that directly pulls the proposed three-dimensional model defined with the help of parametric equations into a commercial CAD modeling environment. This facilitates a wide range of downstream technological applications. The modeled tool is used for finite element simulations to study the cutting flutes under static and transient dynamic load conditions. The results of stress distribution (von mises stress), translational displacement and deformation are presented for static and transient dynamic analysis for the end mill cutter flute and its body. The method described in this paper offers a simple and intuitive way of generating high-quality end mill models for use in machining process simulations. It can be easily extended to generate other tools without relying on analytical or numerical formulations.  相似文献   
37.
A comparison has been made of the relationship between microstructure and microhardness developed by surface melting Nanosteel SHS 7170 Fe–Cr–B alloy powder onto a plain carbon steel surface. This powder was initially developed as a high velocity oxyfuel sprayed coating, giving a strength 10 times that of mild steel, and is particularly suitable for surface protection against wear and corrosion. In the present study, the alloy powder was injected into the laser melted surface, while a preplaced powder was melted using the gas tungsten arc welding (GTAW) technique. The laser track consisted of fine dendrites and needle-like microstructures, which produced a maximum hardness value of over 800 HV, while the GTAW track produced a mixture of equiaxed and columnar grain microstructures with a maximum hardness value of 670 HV. The lower hardness values are considered to be associated with dilution and grain size.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号