首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   56篇
电工技术   4篇
化学工业   386篇
金属工艺   5篇
机械仪表   11篇
建筑科学   24篇
能源动力   9篇
轻工业   137篇
石油天然气   1篇
无线电   24篇
一般工业技术   72篇
冶金工业   8篇
自动化技术   68篇
  2024年   1篇
  2023年   12篇
  2022年   124篇
  2021年   103篇
  2020年   26篇
  2019年   24篇
  2018年   39篇
  2017年   26篇
  2016年   35篇
  2015年   39篇
  2014年   43篇
  2013年   42篇
  2012年   37篇
  2011年   39篇
  2010年   29篇
  2009年   30篇
  2008年   26篇
  2007年   10篇
  2006年   15篇
  2005年   23篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1994年   1篇
排序方式: 共有749条查询结果,搜索用时 15 毫秒
41.
Wound healing (WH) proceeds through four distinct phases: hemostasis, inflammation, proliferation, and remodeling. Impaired WH may be the consequence of the alteration of one of these phases and represents a significant health and economic burden to millions of individuals. Thus, new therapeutic strategies are the topics of intense research worldwide. Although radiofrequency electromagnetic field (RF-EMF) has many medical applications in rehabilitation, pain associated with musculoskeletal disorders, and degenerative joint disorders, its impact on WH is not fully understood. The process of WH begins just after injury and continues during the inflammatory and proliferative phases. A thorough understanding of the mechanisms by which RF-EMF can improve WH is required before it can be used as a non-invasive, inexpensive, and easily self-applicable therapeutic strategy. Thus, the aim of this study is to explore the therapeutic potential of different exposure setups of RF-EMF to drive faster healing, evaluating the keratinocytes migration, cytokines, and matrix metalloproteinases (MMPs) expression. The results showed that RF-EMF treatment promotes keratinocytes’ migration and regulates the expression of genes involved in healing, such as MMPs, tissue inhibitors of metalloproteinases, and pro/anti-inflammatory cytokines, to improve WH.  相似文献   
42.
The main aim of this study was to identify the most relevant cytokines which, when assessed in the earliest stages from hospital admission, may help to select COVID-19 patients with worse prognosis. A retrospective observational study was conducted in 415 COVID-19 patients (272 males; mean age 68 ± 14 years) hospitalized between May 2020 and March 2021. Within the first 72 h from hospital admission, patients were tested for a large panel of biomarkers, including C-reactive protein (CRP), Mid-regional proadrenomedullin (MR-proADM), Interferon-γ, interleukin 6 (IL-6), IL-1β, IL-8, IL-10, soluble IL2-receptor-α (sIL2Rα), IP10 and TNFα. Extensive statistical analyses were performed (correlations, t-tests, ranking tests and tree modeling). The mortality rate was 65/415 (15.7%) and a negative outcome (death and/or orotracheal intubation) affected 98/415 (23.6%) of cases. Univariate tests showed the majority of biomarkers increased in severe patients, but ranking tests helped to select the best variables to put on decisional tree modeling which identified IL-6 as the first dichotomic marker with a cut-off of 114 pg/mL. Then, a good synergy was found between IL-10, MR-proADM, sIL2Rα, IP10 and CRP in increasing the predictive value in classifying patients at risk or not for a negative outcome. In conclusion, beside IL-6, a panel of other cytokines representing the degree of immunoparalysis and the anti-inflammatory response (IP10, sIL2Rα and IL-10) showed synergic role when combined to biomarkers of systemic inflammation and endothelial dysfunction (CRP, MR-proADM) and may also better explain disease pathogenesis and suggests targeted intervention.  相似文献   
43.
Gelatin reactivity with isocyanate was studied by using the easy detectable 1-naphthyl-isocyanate (NphI). Four different NphI/gelatin feed ratios were investigated with NphI molar amount ranging between 1/10 and 1/1 with respect to the possible reactive groups of gelatin. The reactions were carried out at 45 °C in DMSO as solvent, under nitrogen atmosphere. Modified gelatin samples were characterized by IR, UV–VIS, fluorescence spectroscopies as well as by proton and DOSY NMR. Spectroscopy results allow to evidence the presence of both bonded and unbonded naphthyl derivatives in the gelatin samples. Unbonded species were present particularly at the highest NphI/gelatin feed ratio and their formation was correlated to the increasing competition of the reaction with water since the amount of available reactive groups on gelatin was comparable or smaller than the amount of residuum water in dry gelatin.  相似文献   
44.

Abstract  

Styrene oxide can be effectively isomerized to phenyl-acetaldehyde (98%) over amorphous silica alumina catalysts under very mild liquid phase conditions. On the other hand, a copper catalyst prepared using a silica zirconia support gave up to 80% yield in the hydrogenation of styrene oxide to 2-phenyl-ethanol.  相似文献   
45.
Surface properties of epoxy coatings are modified by PDMS additives in cationic UV curing of a cycloaliphatic epoxy resin. The cured films show a very high hydrophobicity that does not depend on PDMS concentration, indicating that a threshold is reached even at 0.3 wt% additive. A slight increase of the water contact angle as a function of PDMS molecular weight is observed. The additive selectively modified the air‐side of the film, while the glass‐side retains the surface properties of the pure resin. This segregation phenomenon permits to obtain highly hydrophobic films with still good adhesion properties on polar substrates, which is an important advantage over common surface‐modified resins.

  相似文献   

46.
Microwave-Hydrothermal Synthesis of Nanocrystalline Zirconia Powders   总被引:1,自引:0,他引:1  
Nanosized zirconium oxide (ZrO2) powders were prepared by adding NaOH to a zirconyl chloride aqueous solution under microwave-hydrothermal conditions. The obtained results showed that the tetragonal polymorph increased with increasing NaOH concentration in the starting solution and reached the maximum value by using 1 M ZrOCl2. The microwave-assisted hydrothermal synthesis is expected to be able to process continuously, and may lead to energy savings because of rapid heating to temperature and increased kinetics of crystallization. This method is very simple and can lead to powders with desirable characteristics such as very fine size, narrow size distribution, and good chemical homogeneity.  相似文献   
47.
The epidermal growth factor receptor (EGFR), through the MAP kinase and PI3K-Akt-mTOR axis, plays a pivotal role in colorectal cancer (CRC) pathogenesis. The membrane-associated NEU3 sialidase interacts with and desialylates EGFR by promoting its dimerization and downstream effectors’ activation. Among the targeted therapies against EGFR, the monoclonal antibody cetuximab is active only in a subgroup of patients not carrying mutations in the MAP kinase pathway. In order to better understand the EGFR-NEU3 interplay and the mechanisms of pharmacological resistance, we investigated the role of NEU3 deregulation in cetuximab-treated CRC cell lines transiently transfected with NEU3 using Western blot analysis. Our results indicate that NEU3 overexpression can enhance EGFR activation only if EGFR is overexpressed, indicating the existence of a threshold for NEU3-mediated EGFR activation. This enhancement mainly leads to the constitutive activation of the MAP kinase pathway. Consequently, we suggest that the evaluation of NEU3 expression cannot entirely substitute the evaluation of EGFR because EGFR-negative cases cannot be stimulated by NEU3. Furthermore, NEU3-mediated hyperactivation of EGFR is counterbalanced by the administration of cetuximab, hypothesizing that a combined treatment of NEU3- and EGFR-targeted therapies may represent a valid option for CRC patients, which must be investigated in the future.  相似文献   
48.
In recent years, scientific interest in the development of non-dairy-based functional foods is increasing progressively and the fermentation of cereals, legumes, fruits and vegetable-based foods is becoming an important scientific research topic for the production of new probiotic products. In particular, legumes represent a possible alternative to protein foods from animal origins and an adequate fermentation substrate as they contain high amount of nutrients, such as proteins, carbohydrates, fibres, vitamins, and minerals, which are all useful to the growth and metabolic activity of certain microorganisms. This work focuses on the feasibility of developing a dry legume-based functional product using a fermentation process carried out on a 10% w/v navy bean suspension, in a lab-scale stirred batch reactor. After soaking and cooking dried navy beans, the fermentation tests performed on the resulting medium using Lactobacillus paracasei CBA L74 showed a maximum bacterial count of 109 CFU/mL after 20 hours and a maximum lactic acid concentration of 1.9 g/L after 16 hours of process time. A freeze-drying process was performed on the fermented bean suspension, showing a 2-log microbial reduction and a bacterial viability in the resulting probiotic powder of 3.7 × 108 CFU/g.  相似文献   
49.
Even though immunotherapy has radically changed the search for anticancer therapies, there are still many different pathways that are open to intervention with traditional small molecules. To expand our investigation in the anticancer field, we report here a new series of compounds in which our previous pyrazole and imidazopyrazole scaffolds are linked to a differently decorated phenyl ring through an acylhydrazone linker. Preliminary tests on the library were performed at the National Cancer Institute (USA) against the full NCI 60 cell panel. The best compounds among the imidazopyrazole series were then tested by immunofluorescence staining for their inhibition of cell proliferation, apoptosis induction, and their effect on the cell cycle and on microtubules. Two compounds, in particular 4-benzyloxy-3-methoxybenzyliden imidazopyrazole-7-carbohydrazide showed good growth inhibition, with IC50 values in the low-micromolar range, and induced apoptosis. Both compounds altered the cell-cycle phases with the appearance of polyploid cells. Immunofluorescence analysis evidenced microtubules alterations; tubulin polymerization assays and docking studies suggested the tubulin system to be the possible, although not exclusive, target of the new acylhydrazone series reported here.  相似文献   
50.
Next-generation sequencing (NGS) is a cost-effective technology capable of screening several genes simultaneously; however, its application in a clinical context requires an established workflow to acquire reliable sequencing results. Here, we report an optimized NGS workflow analyzing 22 lung cancer-related genes to sequence critical samples such as DNA from formalin-fixed paraffin-embedded (FFPE) blocks and circulating free DNA (cfDNA). Snap frozen and matched FFPE gDNA from 12 non-small cell lung cancer (NSCLC) patients, whose gDNA fragmentation status was previously evaluated using a multiplex PCR-based quality control, were successfully sequenced with Ion Torrent PGM™. The robust bioinformatic pipeline allowed us to correctly call both Single Nucleotide Variants (SNVs) and indels with a detection limit of 5%, achieving 100% specificity and 96% sensitivity. This workflow was also validated in 13 FFPE NSCLC biopsies. Furthermore, a specific protocol for low input gDNA capable of producing good sequencing data with high coverage, high uniformity, and a low error rate was also optimized. In conclusion, we demonstrate the feasibility of obtaining gDNA from FFPE samples suitable for NGS by performing appropriate quality controls. The optimized workflow, capable of screening low input gDNA, highlights NGS as a potential tool in the detection, disease monitoring, and treatment of NSCLC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号